You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsenb/test/mac/sched_test_rand.cc

377 lines
15 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsenb/hdr/stack/mac/sched.h"
#include "srsenb/hdr/stack/mac/sched_carrier.h"
#include "srsenb/hdr/stack/mac/sched_ue.h"
#include <algorithm>
#include <chrono>
#include <random>
#include <set>
#include <unistd.h>
#include "srsran/interfaces/sched_interface.h"
#include "srsran/phy/utils/debug.h"
#include "sched_common_test_suite.h"
#include "sched_test_common.h"
#include "sched_test_utils.h"
#include "srsran/common/common_lte.h"
#include "srsran/common/test_common.h"
namespace srsenb {
uint32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
struct ue_stats_t {
uint32_t nof_dl_rbs = 0;
uint32_t nof_ul_rbs = 0;
uint64_t nof_dl_bytes = 0;
uint64_t nof_ul_bytes = 0;
uint32_t nof_ttis = 0;
};
std::map<uint16_t, ue_stats_t> ue_stats;
ue_stats_t ue_tot_stats;
/*******************
* Logging *
*******************/
/// RAII style class that prints the test diagnostic info on destruction.
class sched_diagnostic_printer
{
public:
explicit sched_diagnostic_printer(srsran::log_sink_spy& s) : s(s) {}
~sched_diagnostic_printer()
{
auto& logger = srslog::fetch_basic_logger("TEST");
logger.info("UE stats:");
logger.info("all: {DL/UL RBs: %" PRIu32 "/%" PRIu32 ", DL/UL bitrates: %0.2f/%0.2f Mbps}",
ue_tot_stats.nof_dl_rbs,
ue_tot_stats.nof_ul_rbs,
ue_tot_stats.nof_dl_bytes * 8 * 0.001 / ue_tot_stats.nof_ttis,
ue_tot_stats.nof_ul_bytes * 8 * 0.001 / ue_tot_stats.nof_ttis);
for (const auto& e : ue_stats) {
logger.info("0x%x: {DL/UL RBs: %" PRIu32 "/%" PRIu32 ", DL/UL bitrates: %0.2f/%0.2f Mbps}",
e.first,
e.second.nof_dl_rbs,
e.second.nof_ul_rbs,
e.second.nof_dl_bytes * 8 * 0.001 / e.second.nof_ttis,
e.second.nof_ul_bytes * 8 * 0.001 / e.second.nof_ttis);
}
logger.info("Number of assertion warnings: %u", s.get_warning_counter());
logger.info("Number of assertion errors: %u", s.get_error_counter());
logger.info("This was the seed: %u", seed);
srslog::flush();
}
private:
srsran::log_sink_spy& s;
};
/*******************
* Dummies *
*******************/
constexpr uint32_t CARRIER_IDX = 0;
// Designed for testing purposes
struct sched_tester : public srsenb::common_sched_tester {
struct tester_user_results {
srsenb::ul_harq_proc ul_harq;
};
struct sched_tti_data {
std::map<uint16_t, tester_user_results> ue_data; ///< stores buffer state of each user
tester_user_results total_ues; ///< stores combined UL/DL buffer state
};
// sched results
sched_tti_data tti_data;
int rem_user(uint16_t rnti) override;
int test_harqs();
private:
void new_test_tti() override;
void before_sched() override;
int process_results() override;
int update_ue_stats();
};
int sched_tester::rem_user(uint16_t rnti)
{
tti_data.ue_data.erase(rnti);
return common_sched_tester::rem_user(rnti);
}
void sched_tester::new_test_tti()
{
common_sched_tester::new_test_tti();
// NOTE: make a local copy, since some of these variables may be cleared during scheduling
tti_data.ue_data.clear();
tti_data.total_ues = tester_user_results();
}
void sched_tester::before_sched()
{
// check pending data buffers
for (auto& it : ue_db) {
uint16_t rnti = it.first;
srsenb::sched_ue* user = it.second.get();
tester_user_results d;
tti_data.ue_data.insert(std::make_pair(rnti, d));
// NOTE: ACK might have just cleared the harq for tti_info.tti_params.tti_tx_ul
tti_data.ue_data[rnti].ul_harq = *user->get_ul_harq(srsenb::to_tx_ul(tti_rx), CARRIER_IDX);
}
}
int sched_tester::process_results()
{
const srsenb::cc_sched_result* cc_result = sched_results.get_cc(tti_rx, CARRIER_IDX);
srsenb::sf_output_res_t sf_out{sched_cell_params, tti_rx, tti_info.ul_sched_result, tti_info.dl_sched_result};
// Common tests
TESTASSERT(test_pdcch_collisions(sf_out, CARRIER_IDX, &cc_result->pdcch_mask) == SRSRAN_SUCCESS);
TESTASSERT(test_dci_content_common(sf_out, CARRIER_IDX) == SRSRAN_SUCCESS);
TESTASSERT(test_sib_scheduling(sf_out, CARRIER_IDX) == SRSRAN_SUCCESS);
TESTASSERT(test_pusch_collisions(sf_out, CARRIER_IDX, &cc_result->ul_mask) == SRSRAN_SUCCESS);
TESTASSERT(test_pdsch_collisions(sf_out, CARRIER_IDX, &cc_result->dl_mask) == SRSRAN_SUCCESS);
// UE dedicated tests
TESTASSERT(run_ue_ded_tests_and_update_ctxt(sf_out) == SRSRAN_SUCCESS);
TESTASSERT(test_harqs() == SRSRAN_SUCCESS);
TESTASSERT(update_ue_stats() == SRSRAN_SUCCESS);
return SRSRAN_SUCCESS;
}
int sched_tester::test_harqs()
{
/* check consistency of DL harq procedures and allocations */
for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].data.size(); ++i) {
const auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i];
uint32_t h_id = data.dci.pid;
uint16_t rnti = data.dci.rnti;
const srsenb::dl_harq_proc& h = ue_db[rnti]->get_dl_harq(h_id, CARRIER_IDX);
CONDERROR(h.get_tti() != srsenb::to_tx_dl(tti_rx),
"The scheduled DL harq pid=%d does not a valid tti=%u",
h_id,
srsenb::to_tx_dl(tti_rx).to_uint());
CONDERROR(h.get_n_cce() != data.dci.location.ncce, "Harq DCI location does not match with result");
}
/* Check PHICH allocations */
for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].phich.size(); ++i) {
const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i];
const auto& hprev = tti_data.ue_data[phich.rnti].ul_harq;
const auto* h = ue_db[phich.rnti]->get_ul_harq(srsenb::to_tx_ul(tti_rx), CARRIER_IDX);
CONDERROR(not hprev.has_pending_phich(), "Alloc PHICH did not have any pending ack");
bool maxretx_flag = hprev.nof_retx(0) + 1 >= hprev.max_nof_retx();
if (phich.phich == sched_interface::ul_sched_phich_t::ACK) {
// The harq can be either ACKed or Resumed
if (not hprev.is_empty()) {
// In case it was resumed
CONDERROR(h == nullptr or h->is_empty(), "Cannot resume empty UL harq");
for (uint32_t j = 0; j < tti_info.ul_sched_result[CARRIER_IDX].pusch.size(); ++j) {
auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[j];
CONDERROR(pusch.dci.rnti == phich.rnti, "Cannot send PHICH::ACK for same harq that got UL grant.");
}
}
} else {
CONDERROR(h->get_pending_data() == 0 and !maxretx_flag, "NACKed harq has no pending data");
}
}
return SRSRAN_SUCCESS;
}
int sched_tester::update_ue_stats()
{
// update ue stats with number of allocated UL PRBs
for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].pusch.size(); ++i) {
const auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i];
uint32_t L, RBstart;
srsran_ra_type2_from_riv(pusch.dci.type2_alloc.riv,
&L,
&RBstart,
sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb,
sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb);
ue_stats[pusch.dci.rnti].nof_ul_rbs += L;
ue_stats[pusch.dci.rnti].nof_ul_bytes += pusch.tbs;
ue_tot_stats.nof_ul_rbs += L;
ue_tot_stats.nof_ul_bytes += pusch.tbs;
}
// update ue stats with number of DL RB allocations
srsran::bounded_bitset<100, true> alloc_mask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb);
for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].data.size(); ++i) {
auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i];
TESTASSERT(srsenb::extract_dl_prbmask(sched_cell_params[CARRIER_IDX].cfg.cell,
tti_info.dl_sched_result[CARRIER_IDX].data[i].dci,
alloc_mask) == SRSRAN_SUCCESS);
ue_stats[data.dci.rnti].nof_dl_rbs += alloc_mask.count();
ue_stats[data.dci.rnti].nof_dl_bytes += data.tbs[0] + data.tbs[1];
ue_tot_stats.nof_dl_rbs += alloc_mask.count();
ue_tot_stats.nof_dl_bytes += data.tbs[0] + data.tbs[1];
}
for (auto& u : ue_db) {
ue_stats[u.first].nof_ttis++;
}
ue_tot_stats.nof_ttis++;
return SRSRAN_SUCCESS;
}
int test_scheduler_rand(srsenb::sched_sim_events sim)
{
// Create classes
sched_tester tester;
srsenb::sched my_sched;
tester.sim_cfg(std::move(sim.sim_args));
TESTASSERT(tester.test_next_ttis(sim.tti_events) == SRSRAN_SUCCESS);
return SRSRAN_SUCCESS;
}
template <typename T>
T pick_random_uniform(std::initializer_list<T> v)
{
return *(v.begin() + std::uniform_int_distribution<size_t>{0, v.size() - 1}(srsenb::get_rand_gen()));
}
sched_sim_events rand_sim_params(uint32_t nof_ttis)
{
auto boolean_dist = []() { return std::uniform_int_distribution<>{0, 1}(srsenb::get_rand_gen()); };
sched_sim_events sim_gen;
uint32_t max_conn_dur = 10000, min_conn_dur = 500;
float P_ul_sr = srsenb::randf() * 0.5, P_dl = srsenb::randf() * 0.5;
float P_prach = 0.99f; // 0.1f + randf()*0.3f;
float ul_sr_exps[] = {1, 4}; // log rand
float dl_data_exps[] = {1, 4}; // log rand
uint32_t max_nof_users = 5;
std::uniform_int_distribution<> connection_dur_dist(min_conn_dur, max_conn_dur);
std::uniform_int_distribution<uint32_t> dist_prb_idx(0, 5);
uint32_t prb_idx = dist_prb_idx(srsenb::get_rand_gen());
uint32_t nof_prb = srsran::lte_cell_nof_prbs[prb_idx];
printf("Number of PRBs is %u\n", nof_prb);
sched_sim_event_generator generator;
sim_gen.sim_args.cell_cfg = {generate_default_cell_cfg(nof_prb)};
sim_gen.sim_args.cell_cfg[0].target_pucch_ul_sinr = pick_random_uniform({10, 15, 20, -1});
sim_gen.sim_args.cell_cfg[0].target_pusch_ul_sinr = pick_random_uniform({10, 15, 20, -1});
sim_gen.sim_args.cell_cfg[0].enable_phr_handling = false;
sim_gen.sim_args.cell_cfg[0].min_phr_thres = 0;
sim_gen.sim_args.default_ue_sim_cfg.ue_cfg = generate_default_ue_cfg();
sim_gen.sim_args.default_ue_sim_cfg.periodic_cqi = true;
sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx = std::uniform_int_distribution<>{1, 5}(srsenb::get_rand_gen());
sim_gen.sim_args.default_ue_sim_cfg.prob_dl_ack_mask.resize(sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx,
0.5);
sim_gen.sim_args.default_ue_sim_cfg.prob_dl_ack_mask.back() = 1;
sim_gen.sim_args.default_ue_sim_cfg.prob_ul_ack_mask.resize(sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx,
0.5);
sim_gen.sim_args.default_ue_sim_cfg.prob_ul_ack_mask.back() = 1;
sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_period = pick_random_uniform({0, 40, 80});
sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_offset = std::uniform_int_distribution<uint32_t>{
0, std::max(sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_period, 1u) - 1}(srsenb::get_rand_gen());
sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.pucch_cfg.n_pucch_sr =
std::uniform_int_distribution<uint32_t>{0, 2047}(srsenb::get_rand_gen());
sim_gen.sim_args.start_tti = 0;
sim_gen.sim_args.sched_args.pdsch_mcs =
boolean_dist() ? -1 : std::uniform_int_distribution<>{0, 24}(srsenb::get_rand_gen());
sim_gen.sim_args.sched_args.pusch_mcs =
boolean_dist() ? -1 : std::uniform_int_distribution<>{0, 24}(srsenb::get_rand_gen());
sim_gen.sim_args.sched_args.min_aggr_level = std::uniform_int_distribution<>{0, 3}(srsenb::get_rand_gen());
generator.tti_events.resize(nof_ttis);
for (uint32_t tti = 0; tti < nof_ttis; ++tti) {
for (auto& u : generator.current_users) {
uint32_t rnti = u.first;
if (srsenb::randf() < P_ul_sr) {
float exp = ul_sr_exps[0] + srsenb::randf() * (ul_sr_exps[1] - ul_sr_exps[0]);
generator.add_ul_data(rnti, (uint32_t)pow(10, exp));
}
if (srsenb::randf() < P_dl) {
float exp = dl_data_exps[0] + srsenb::randf() * (dl_data_exps[1] - dl_data_exps[0]);
generator.add_dl_data(rnti, (uint32_t)pow(10, exp));
}
}
// may add new user (For now, we only support one UE per PRACH)
bool is_prach_tti =
srsran_prach_tti_opportunity_config_fdd(sim_gen.sim_args.cell_cfg[CARRIER_IDX].prach_config, tti, -1);
if (is_prach_tti and generator.current_users.size() < max_nof_users and srsenb::randf() < P_prach) {
generator.add_new_default_user(connection_dur_dist(srsenb::get_rand_gen()), sim_gen.sim_args.default_ue_sim_cfg);
}
generator.step_tti();
}
sim_gen.tti_events = std::move(generator.tti_events);
return sim_gen;
}
} // namespace srsenb
int main()
{
// Setup seed
srsenb::set_randseed(srsenb::seed);
printf("This is the chosen seed: %u\n", srsenb::seed);
// Setup the log spy to intercept error and warning log entries.
if (!srslog::install_custom_sink(
srsran::log_sink_spy::name(),
std::unique_ptr<srsran::log_sink_spy>(new srsran::log_sink_spy(srslog::get_default_log_formatter())))) {
return SRSRAN_ERROR;
}
auto* spy = static_cast<srsran::log_sink_spy*>(srslog::find_sink(srsran::log_sink_spy::name()));
if (!spy) {
return SRSRAN_ERROR;
}
auto& mac_log = srslog::fetch_basic_logger("MAC");
mac_log.set_level(srslog::basic_levels::info);
auto& test_log = srslog::fetch_basic_logger("TEST", *spy, false);
test_log.set_level(srslog::basic_levels::info);
// Start the log backend.
srslog::init();
uint32_t N_runs = 1, nof_ttis = 10240 + 10;
srsenb::sched_diagnostic_printer printer(*spy);
for (uint32_t n = 0; n < N_runs; ++n) {
printf("Sim run number: %u\n", n + 1);
srsenb::sched_sim_events sim = srsenb::rand_sim_params(nof_ttis);
TESTASSERT(srsenb::test_scheduler_rand(std::move(sim)) == SRSRAN_SUCCESS);
}
return 0;
}