You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsenb/test/mac/scheduler_test_common.cc

962 lines
38 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "scheduler_test_common.h"
#include "lib/include/srslte/common/pdu.h"
#include "srsenb/hdr/stack/mac/scheduler.h"
#include "srslte/common/test_common.h"
#include <set>
using namespace srsenb;
/***************************
* Random Utils
**************************/
std::default_random_engine rand_gen;
float ::srsenb::randf()
{
static std::uniform_real_distribution<float> unif_dist(0, 1.0);
return unif_dist(rand_gen);
}
void ::srsenb::set_randseed(uint64_t seed)
{
rand_gen = std::default_random_engine(seed);
}
std::default_random_engine& ::srsenb::get_rand_gen()
{
return rand_gen;
}
/***************************
* Sched Testers
**************************/
int output_sched_tester::test_pusch_collisions(const tti_params_t& tti_params,
const sched_interface::ul_sched_res_t& ul_result,
prbmask_t& ul_allocs) const
{
uint32_t nof_prb = cell_params.nof_prb();
ul_allocs.resize(nof_prb);
ul_allocs.reset();
auto try_ul_fill = [&](srsenb::ul_harq_proc::ul_alloc_t alloc, const char* ch_str, bool strict = true) {
CONDERROR((alloc.RB_start + alloc.L) > nof_prb,
"Allocated RBs (%d,%d) out-of-bounds\n",
alloc.RB_start,
alloc.RB_start + alloc.L);
CONDERROR(alloc.L == 0, "Allocations must have at least one PRB\n");
if (strict and ul_allocs.any(alloc.RB_start, alloc.RB_start + alloc.L)) {
TESTERROR("Collision Detected of %s alloc=(%d,%d) and cumulative_mask=0x%s\n",
ch_str,
alloc.RB_start,
alloc.RB_start + alloc.L,
ul_allocs.to_hex().c_str());
}
ul_allocs.fill(alloc.RB_start, alloc.RB_start + alloc.L, true);
return SRSLTE_SUCCESS;
};
/* TEST: Check if there is space for PRACH */
bool is_prach_tti_tx_ul =
srslte_prach_tti_opportunity_config_fdd(cell_params.cfg.prach_config, tti_params.tti_tx_ul, -1);
if (is_prach_tti_tx_ul) {
try_ul_fill({cell_params.cfg.prach_freq_offset, 6}, "PRACH");
}
/* TEST: check collisions in PUCCH */
bool strict = nof_prb != 6 or (not is_prach_tti_tx_ul); // and not tti_data.ul_pending_msg3_present);
try_ul_fill({0, (uint32_t)cell_params.cfg.nrb_pucch}, "PUCCH", strict);
try_ul_fill(
{cell_params.cfg.cell.nof_prb - cell_params.cfg.nrb_pucch, (uint32_t)cell_params.cfg.nrb_pucch}, "PUCCH", strict);
/* TEST: check collisions in the UL PUSCH */
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
uint32_t L, RBstart;
srslte_ra_type2_from_riv(ul_result.pusch[i].dci.type2_alloc.riv, &L, &RBstart, nof_prb, nof_prb);
strict = ul_result.pusch[i].needs_pdcch or nof_prb != 6; // Msg3 may collide with PUCCH at PRB==6
try_ul_fill({RBstart, L}, "PUSCH", strict);
// ue_stats[ul_result.pusch[i].dci.rnti].nof_ul_rbs += L;
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_pdsch_collisions(const tti_params_t& tti_params,
const sched_interface::dl_sched_res_t& dl_result,
rbgmask_t& rbgmask) const
{
srslte::bounded_bitset<100, true> dl_allocs(cell_params.cfg.cell.nof_prb), alloc_mask(cell_params.cfg.cell.nof_prb);
auto try_dl_mask_fill = [&](const srslte_dci_dl_t& dci, const char* channel) {
if (extract_dl_prbmask(cell_params.cfg.cell, dci, &alloc_mask) != SRSLTE_SUCCESS) {
return SRSLTE_ERROR;
}
if ((dl_allocs & alloc_mask).any()) {
TESTERROR("Detected collision in the DL %s allocation (%s intersects %s)\n",
channel,
dl_allocs.to_string().c_str(),
alloc_mask.to_string().c_str());
}
dl_allocs |= alloc_mask;
return SRSLTE_SUCCESS;
};
// Decode BC allocations, check collisions, and fill cumulative mask
for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) {
TESTASSERT(try_dl_mask_fill(dl_result.bc[i].dci, "BC") == SRSLTE_SUCCESS);
}
// Decode RAR allocations, check collisions, and fill cumulative mask
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
TESTASSERT(try_dl_mask_fill(dl_result.rar[i].dci, "RAR") == SRSLTE_SUCCESS);
}
// forbid Data in DL if it conflicts with PRACH for PRB==6
if (cell_params.cfg.cell.nof_prb == 6) {
uint32_t tti_rx_ack = tti_params.tti_rx_ack_dl();
if (srslte_prach_tti_opportunity_config_fdd(cell_params.cfg.prach_config, tti_rx_ack, -1)) {
dl_allocs.fill(0, dl_allocs.size());
}
}
// Decode Data allocations, check collisions and fill cumulative mask
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
TESTASSERT(try_dl_mask_fill(dl_result.data[i].dci, "data") == SRSLTE_SUCCESS);
}
// TEST: check for holes in the PRB mask (RBGs not fully filled)
rbgmask.resize(cell_params.nof_rbgs);
rbgmask.reset();
srslte::bounded_bitset<100, true> rev_alloc = ~dl_allocs;
for (uint32_t i = 0; i < cell_params.nof_rbgs; ++i) {
uint32_t lim = SRSLTE_MIN((i + 1) * cell_params.P, dl_allocs.size());
bool val = dl_allocs.any(i * cell_params.P, lim);
CONDERROR(rev_alloc.any(i * cell_params.P, lim) and val, "No holes can be left in an RBG\n");
if (val) {
rbgmask.set(i);
}
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_sib_scheduling(const tti_params_t& tti_params,
const sched_interface::dl_sched_res_t& dl_result) const
{
uint32_t sfn = tti_params.sfn_tx_dl;
uint32_t sf_idx = tti_params.sf_idx_tx_dl;
bool sib1_present = ((sfn % 2) == 0) and sf_idx == 5;
using bc_elem = const sched_interface::dl_sched_bc_t;
bc_elem* bc_begin = &dl_result.bc[0];
bc_elem* bc_end = &dl_result.bc[dl_result.nof_bc_elems];
/* Test if SIB1 was correctly scheduled */
if (sib1_present) {
auto it = std::find_if(bc_begin, bc_end, [](bc_elem& elem) { return elem.index == 0; });
CONDERROR(it == bc_end, "Failed to allocate SIB1 in even sfn, sf_idx==5\n");
}
/* Test if any SIB was scheduled with wrong index, tbs, or outside of its window */
for (bc_elem* bc = bc_begin; bc != bc_end; ++bc) {
if (bc->index == 0) {
continue;
}
CONDERROR(bc->index >= sched_interface::MAX_SIBS, "Invalid SIB idx=%d\n", bc->index + 1);
CONDERROR(bc->tbs < cell_params.cfg.sibs[bc->index].len,
"Allocated BC process with TBS=%d < sib_len=%d\n",
bc->tbs,
cell_params.cfg.sibs[bc->index].len);
uint32_t x = (bc->index - 1) * cell_params.cfg.si_window_ms;
uint32_t sf = x % 10;
uint32_t sfn_start = sfn;
while ((sfn_start % cell_params.cfg.sibs[bc->index].period_rf) != x / 10) {
sfn_start--;
}
uint32_t win_start = sfn_start * 10 + sf;
uint32_t win_end = win_start + cell_params.cfg.si_window_ms;
CONDERROR(tti_params.tti_tx_dl < win_start or tti_params.tti_tx_dl > win_end,
"Scheduled SIB is outside of its SIB window\n");
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_pdcch_collisions(const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result,
srslte::bounded_bitset<128, true>* used_cce) const
{
used_cce->resize(srslte_regs_pdcch_ncce(cell_params.regs.get(), dl_result.cfi));
used_cce->reset();
// Helper Function: checks if there is any collision. If not, fills the PDCCH mask
auto try_cce_fill = [&](const srslte_dci_location_t& dci_loc, const char* ch) {
uint32_t cce_start = dci_loc.ncce, cce_stop = dci_loc.ncce + (1u << dci_loc.L);
if (used_cce->any(cce_start, cce_stop)) {
TESTERROR("%s DCI collision between CCE positions (%u, %u)\n", ch, cce_start, cce_stop);
}
used_cce->fill(cce_start, cce_stop);
return SRSLTE_SUCCESS;
};
/* TEST: verify there are no dci collisions for UL, DL data, BC, RAR */
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
const auto& pusch = ul_result.pusch[i];
if (not pusch.needs_pdcch) {
// In case of non-adaptive retx or Msg3
continue;
}
try_cce_fill(pusch.dci.location, "UL");
}
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
try_cce_fill(dl_result.data[i].dci.location, "DL data");
}
for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) {
try_cce_fill(dl_result.bc[i].dci.location, "DL BC");
}
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
try_cce_fill(dl_result.rar[i].dci.location, "DL RAR");
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_dci_values_consistency(const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result) const
{
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
const auto& pusch = ul_result.pusch[i];
CONDERROR(pusch.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", pusch.tbs);
// CONDERROR(ue_db.count(pusch.dci.rnti) == 0, "The allocated rnti=0x%x does not exist\n", pusch.dci.rnti);
if (not pusch.needs_pdcch) {
// In case of non-adaptive retx or Msg3
continue;
}
CONDERROR(pusch.dci.location.L == 0,
"Invalid aggregation level %d\n",
pusch.dci.location.L); // TODO: Extend this test
}
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
auto& data = dl_result.data[i];
CONDERROR(data.tbs[0] == 0, "Allocated DL data has empty TBS\n");
}
for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) {
auto& bc = dl_result.bc[i];
if (bc.type == sched_interface::dl_sched_bc_t::BCCH) {
CONDERROR(bc.tbs < cell_params.cfg.sibs[bc.index].len,
"Allocated BC process with TBS=%d < sib_len=%d\n",
bc.tbs,
cell_params.cfg.sibs[bc.index].len);
} else if (bc.type == sched_interface::dl_sched_bc_t::PCCH) {
CONDERROR(bc.tbs == 0, "Allocated paging process with invalid TBS=%d\n", bc.tbs);
} else {
TESTERROR("Invalid broadcast process id=%d\n", (int)bc.type);
}
}
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
const auto& rar = dl_result.rar[i];
CONDERROR(rar.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", rar.tbs);
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_all(const tti_params_t& tti_params,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result) const
{
prbmask_t ul_allocs;
TESTASSERT(test_pusch_collisions(tti_params, ul_result, ul_allocs) == SRSLTE_SUCCESS);
rbgmask_t dl_mask;
TESTASSERT(test_pdsch_collisions(tti_params, dl_result, dl_mask) == SRSLTE_SUCCESS);
TESTASSERT(test_sib_scheduling(tti_params, dl_result) == SRSLTE_SUCCESS);
srslte::bounded_bitset<128, true> used_cce;
TESTASSERT(test_pdcch_collisions(dl_result, ul_result, &used_cce) == SRSLTE_SUCCESS);
return SRSLTE_SUCCESS;
}
int srsenb::extract_dl_prbmask(const srslte_cell_t& cell,
const srslte_dci_dl_t& dci,
srslte::bounded_bitset<100, true>* alloc_mask)
{
srslte_pdsch_grant_t grant;
srslte_dl_sf_cfg_t dl_sf = {};
alloc_mask->resize(cell.nof_prb);
alloc_mask->reset();
CONDERROR(srslte_ra_dl_dci_to_grant(&cell, &dl_sf, SRSLTE_TM1, false, &dci, &grant) == SRSLTE_ERROR,
"Failed to decode PDSCH grant\n");
for (uint32_t j = 0; j < alloc_mask->size(); ++j) {
if (grant.prb_idx[0][j]) {
alloc_mask->set(j);
}
}
return SRSLTE_SUCCESS;
}
void user_state_sched_tester::new_tti(uint32_t tti_rx)
{
tic++;
}
int user_state_sched_tester::add_user(uint16_t rnti,
uint32_t preamble_idx,
const srsenb::sched_interface::ue_cfg_t& ue_cfg)
{
CONDERROR(!srslte_prach_tti_opportunity_config_fdd(
cell_params[ue_cfg.supported_cc_list[0].enb_cc_idx].prach_config, tic.tti_rx(), -1),
"New user added in a non-PRACH TTI\n");
TESTASSERT(users.count(rnti) == 0);
ue_state ue;
ue.user_cfg = ue_cfg;
ue.prach_tic = tic;
ue.preamble_idx = preamble_idx;
users.insert(std::make_pair(rnti, ue));
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::user_reconf(uint16_t rnti, const srsenb::sched_interface::ue_cfg_t& ue_cfg)
{
TESTASSERT(users.count(rnti) > 0);
users[rnti].user_cfg = ue_cfg;
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::bearer_cfg(uint16_t rnti,
uint32_t lcid,
const srsenb::sched_interface::ue_bearer_cfg_t& bearer_cfg)
{
auto it = users.find(rnti);
TESTASSERT(it != users.end());
it->second.user_cfg.ue_bearers[lcid] = bearer_cfg;
users[rnti].drb_cfg_flag = false;
for (uint32_t i = 2; i < it->second.user_cfg.ue_bearers.size(); ++i) {
if (it->second.user_cfg.ue_bearers[i].direction != sched_interface::ue_bearer_cfg_t::IDLE) {
users[rnti].drb_cfg_flag = true;
}
}
return SRSLTE_SUCCESS;
}
void user_state_sched_tester::rem_user(uint16_t rnti)
{
users.erase(rnti);
}
/**
* Tests whether the RAR and Msg3 were scheduled within the expected windows. Individual tests:
* - No UL allocs before Msg3
* - No DL data allocs before Msg3 is correctly ACKed
* - RAR alloc falls within RAR window and is unique per user
* - Msg3 is allocated in expected TTI, without PDCCH, and correct rnti
* - First Data allocation happens after Msg3, and contains a ConRes
* - No RARs are allocated with wrong enb_cc_idx, preamble_idx or wrong user
* TODO:
* - check Msg3 PRBs match the ones advertised in the RAR
*/
int user_state_sched_tester::test_ra(uint32_t enb_cc_idx,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result)
{
uint32_t msg3_count = 0;
for (auto& iter : users) {
uint16_t rnti = iter.first;
ue_state& userinfo = iter.second;
uint32_t primary_cc_idx = userinfo.user_cfg.supported_cc_list[0].enb_cc_idx;
if (enb_cc_idx != primary_cc_idx) {
// only check for RAR/Msg3 presence for a UE's PCell
continue;
}
/* TEST: RAR allocation */
std::array<tti_counter, 2> rar_window = {
userinfo.prach_tic + 3, userinfo.prach_tic + 3 + (int)cell_params[primary_cc_idx].prach_rar_window};
tti_counter tic_tx_dl = tic.tic_tx_dl();
tti_counter tic_tx_ul = tic.tic_tx_ul();
bool is_in_rar_window = tic_tx_dl >= rar_window[0] and tic_tx_dl <= rar_window[1];
if (not is_in_rar_window) {
CONDERROR(not userinfo.rar_tic.is_valid() and tic_tx_dl > rar_window[1],
"RAR not scheduled within the RAR Window\n");
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
CONDERROR(dl_result.rar[i].dci.rnti == rnti, "No RAR allocations allowed outside of user RAR window\n");
}
} else {
// Inside RAR window
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
for (uint32_t j = 0; j < dl_result.rar[i].nof_grants; ++j) {
auto& data = dl_result.rar[i].msg3_grant[j].data;
if (data.prach_tti == (uint32_t)userinfo.prach_tic.tti_rx() and data.preamble_idx == userinfo.preamble_idx) {
CONDERROR(userinfo.rar_tic.is_valid(), "There was more than one RAR for the same user\n");
CONDERROR(rnti != data.temp_crnti, "RAR grant C-RNTI does not match the expected.\n");
userinfo.msg3_riv = dl_result.rar[i].msg3_grant[j].grant.rba;
userinfo.rar_tic = tic_tx_dl;
}
}
}
}
/* TEST: Check Msg3 */
if (userinfo.rar_tic.is_valid() and not userinfo.msg3_tic.is_valid()) {
// RAR scheduled, Msg3 not yet scheduled
tti_counter expected_msg3_tti = userinfo.rar_tic + FDD_HARQ_DELAY_DL_MS + MSG3_DELAY_MS;
CONDERROR(expected_msg3_tti < tic_tx_ul and not userinfo.msg3_tic.is_valid(), "No UL msg3 alloc was made\n");
if (expected_msg3_tti == tic_tx_ul) {
// Msg3 should exist
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
if (ul_result.pusch[i].dci.rnti == rnti) {
CONDERROR(userinfo.msg3_tic.is_valid(), "Only one Msg3 allowed per user\n");
CONDERROR(ul_result.pusch[i].needs_pdcch, "Msg3 allocations do not require PDCCH\n");
CONDERROR(userinfo.msg3_riv != ul_result.pusch[i].dci.type2_alloc.riv,
"The Msg3 was not allocated in the expected PRBs.\n");
userinfo.msg3_tic = tic_tx_ul;
msg3_count++;
}
}
}
}
/* TEST: Check Msg4 */
if (userinfo.msg3_tic.is_valid() and not userinfo.msg4_tic.is_valid()) {
// Msg3 scheduled, but Msg4 not yet scheduled
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
if (dl_result.data[i].dci.rnti == rnti) {
CONDERROR(tic < userinfo.msg3_tic, "Msg4 cannot be scheduled without Msg3 being tx\n");
for (uint32_t j = 0; j < dl_result.data[i].nof_pdu_elems[0]; ++j) {
if (dl_result.data[i].pdu[0][j].lcid == srslte::sch_subh::CON_RES_ID) {
// ConRes found
CONDERROR(dl_result.data[i].dci.format != SRSLTE_DCI_FORMAT1, "ConRes must be format1\n");
CONDERROR(userinfo.msg4_tic.is_valid(), "Duplicate ConRes CE for the same rnti\n");
userinfo.msg4_tic = tic_tx_dl;
}
}
}
}
}
/* TEST: Txs out of place */
if (not userinfo.msg4_tic.is_valid()) {
// Msg4 not yet received by user
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
CONDERROR(dl_result.data[i].dci.rnti == rnti, "No DL data allocs allowed before Msg4 is scheduled\n");
}
if (userinfo.msg3_tic.is_valid() and userinfo.msg3_tic != tic_tx_ul) {
// Msg3 scheduled. No UL alloc allowed unless it is a newtx (the Msg3 itself)
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
// Needs PDCCH - filters out UL retxs
bool msg3_retx = ((tic_tx_ul - userinfo.msg3_tic) % (FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS)) == 0;
CONDERROR(ul_result.pusch[i].dci.rnti == rnti and not msg3_retx,
"No UL txs allowed except for Msg3 before user received Msg4\n");
}
} else if (not userinfo.msg3_tic.is_valid()) {
// Not Msg3 sched TTI
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
CONDERROR(ul_result.pusch[i].dci.rnti == rnti, "No UL newtxs allowed before user received Msg4\n");
}
}
}
}
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
auto& pusch_alloc = ul_result.pusch[i];
if (not pusch_alloc.needs_pdcch) {
// can be adaptive retx or msg3
auto& ue = users[pusch_alloc.dci.rnti];
if (tic.tic_tx_ul() == ue.msg3_tic) {
msg3_count--;
}
}
}
CONDERROR(msg3_count > 0, "There are pending msg3 that do not belong to any active UE\n");
return SRSLTE_SUCCESS;
}
/**
* Individual tests:
* - All RARs belong to a user that just PRACHed
* - All DL/UL data allocs have a valid RNTI
*/
int user_state_sched_tester::test_ctrl_info(uint32_t enb_cc_idx,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result)
{
/* TEST: Ensure there are no spurious RARs that do not belong to any user */
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
for (uint32_t j = 0; j < dl_result.rar[i].nof_grants; ++j) {
uint32_t prach_tti = dl_result.rar[i].msg3_grant[j].data.prach_tti;
uint32_t preamble_idx = dl_result.rar[i].msg3_grant[j].data.preamble_idx;
auto it = std::find_if(users.begin(), users.end(), [&](const std::pair<uint16_t, ue_state>& u) {
return u.second.preamble_idx == preamble_idx and ((uint32_t)u.second.prach_tic.tti_rx() == prach_tti);
});
CONDERROR(it == users.end(), "There was a RAR allocation with no associated user");
CONDERROR(it->second.user_cfg.supported_cc_list[0].enb_cc_idx != enb_cc_idx,
"The allocated RAR is in the wrong cc\n");
}
}
/* TEST: All DL allocs have a correct rnti */
std::set<uint16_t> alloc_rntis;
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
uint16_t rnti = dl_result.data[i].dci.rnti;
CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in DL\n", rnti);
CONDERROR(users.count(rnti) == 0, "The user rnti=0x%x allocated in DL does not exist\n", rnti);
alloc_rntis.insert(rnti);
}
/* TEST: All UL allocs have a correct rnti */
alloc_rntis.clear();
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
uint16_t rnti = ul_result.pusch[i].dci.rnti;
CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in UL\n", rnti);
CONDERROR(users.count(rnti) == 0, "The user rnti=0x%x allocated in UL does not exist\n", rnti);
alloc_rntis.insert(rnti);
}
return SRSLTE_SUCCESS;
}
/**
* Tests whether the SCells are correctly activated. Individual tests:
* - no DL and UL allocations in inactive carriers
*/
int user_state_sched_tester::test_scell_activation(uint32_t enb_cc_idx,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result)
{
for (auto& iter : users) {
uint16_t rnti = iter.first;
ue_state& userinfo = iter.second;
auto it = std::find_if(userinfo.user_cfg.supported_cc_list.begin(),
userinfo.user_cfg.supported_cc_list.end(),
[enb_cc_idx](const sched::ue_cfg_t::cc_cfg_t& cc) { return cc.enb_cc_idx == enb_cc_idx; });
if (it == userinfo.user_cfg.supported_cc_list.end() or not it->active) {
// cell not active. Ensure data allocations are not made
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
CONDERROR(dl_result.data[i].dci.rnti == rnti, "Allocated user in inactive carrier\n");
}
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
CONDERROR(ul_result.pusch[i].needs_pdcch and ul_result.pusch[i].dci.rnti == rnti,
"Allocated user in inactive carrier\n");
}
} else {
uint32_t ue_cc_idx = std::distance(userinfo.user_cfg.supported_cc_list.begin(), it);
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
if (dl_result.data[i].dci.rnti == rnti) {
CONDERROR(dl_result.data[i].dci.ue_cc_idx != ue_cc_idx, "User cell index was incorrectly set\n");
}
}
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
if (ul_result.pusch[i].needs_pdcch and ul_result.pusch[i].dci.rnti == rnti) {
CONDERROR(ul_result.pusch[i].dci.ue_cc_idx != ue_cc_idx, "The user cell index was incorrectly set\n");
}
}
}
}
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::test_all(uint32_t enb_cc_idx,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result)
{
TESTASSERT(test_ra(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS);
TESTASSERT(test_ctrl_info(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS);
TESTASSERT(test_scell_activation(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS);
return SRSLTE_SUCCESS;
}
void sched_result_stats::process_results(const tti_params_t& tti_params,
const std::vector<sched_interface::dl_sched_res_t>& dl_result,
const std::vector<sched_interface::ul_sched_res_t>& ul_result)
{
for (uint32_t ccidx = 0; ccidx < dl_result.size(); ++ccidx) {
for (uint32_t i = 0; i < dl_result[ccidx].nof_data_elems; ++i) {
user_stats* user = get_user(dl_result[ccidx].data[i].dci.rnti);
user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[0];
user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[1];
}
for (uint32_t i = 0; i < ul_result[ccidx].nof_dci_elems; ++i) {
user_stats* user = get_user(ul_result[ccidx].pusch[i].dci.rnti);
user->tot_ul_sched_data[ccidx] += ul_result[ccidx].pusch[i].tbs;
}
}
}
sched_result_stats::user_stats* sched_result_stats::get_user(uint16_t rnti)
{
if (users.count(rnti) != 0) {
return &users[rnti];
}
users[rnti].rnti = rnti;
users[rnti].tot_dl_sched_data.resize(cell_params.size(), 0);
users[rnti].tot_ul_sched_data.resize(cell_params.size(), 0);
return &users[rnti];
}
/***********************
* Common Sched Tester
**********************/
const sched::ue_cfg_t* common_sched_tester::get_current_ue_cfg(uint16_t rnti) const
{
auto it = ue_db.find(rnti);
if (it == ue_db.end()) {
return nullptr;
}
return &it->second.get_ue_cfg();
}
int common_sched_tester::sim_cfg(sim_sched_args args)
{
sim_args0 = std::move(args);
sched::cell_cfg(sim_args0.cell_cfg); // call parent cfg
ue_tester.reset(new user_state_sched_tester{sim_args0.cell_cfg});
output_tester.clear();
output_tester.reserve(sim_args0.cell_cfg.size());
for (uint32_t i = 0; i < sim_args0.cell_cfg.size(); ++i) {
output_tester.emplace_back(sched_cell_params[i]);
}
sched_stats.reset(new sched_result_stats{sim_args0.cell_cfg});
tester_log = sim_args0.sim_log;
return SRSLTE_SUCCESS;
}
int common_sched_tester::add_user(uint16_t rnti, const ue_cfg_t& ue_cfg_)
{
CONDERROR(ue_cfg(rnti, ue_cfg_) != SRSLTE_SUCCESS, "Configuring new user rnti=0x%x to sched\n", rnti);
// CONDERROR(!srslte_prach_tti_opportunity_config_fdd(
// sched_cell_params[CARRIER_IDX].cfg.prach_config, tti_info.tti_params.tti_rx, -1),
// "New user added in a non-PRACH TTI\n");
dl_sched_rar_info_t rar_info = {};
rar_info.prach_tti = tti_info.tti_params.tti_rx;
rar_info.temp_crnti = rnti;
rar_info.msg3_size = 7;
rar_info.preamble_idx = tti_info.nof_prachs++;
uint32_t pcell_idx = ue_cfg_.supported_cc_list[0].enb_cc_idx;
dl_rach_info(pcell_idx, rar_info);
ue_tester->add_user(rnti, rar_info.preamble_idx, ue_cfg_);
tester_log->info("Adding user rnti=0x%x\n", rnti);
return SRSLTE_SUCCESS;
}
void common_sched_tester::rem_user(uint16_t rnti)
{
tester_log->info("Removing user rnti=0x%x\n", rnti);
sched::ue_rem(rnti);
ue_tester->rem_user(rnti);
}
void common_sched_tester::new_test_tti()
{
if (not tic.is_valid()) {
tic.set_start_tti(sim_args0.start_tti);
} else {
tic++;
}
tti_info.tti_params = tti_params_t{tic.tti_rx()};
tti_info.nof_prachs = 0;
tti_info.dl_sched_result.clear();
tti_info.ul_sched_result.clear();
tti_info.dl_sched_result.resize(sched_cell_params.size());
tti_info.ul_sched_result.resize(sched_cell_params.size());
tester_log->step(tti_info.tti_params.tti_rx);
ue_tester->new_tti(tti_info.tti_params.tti_rx);
}
int common_sched_tester::process_ack_txs()
{
/* check if user was removed. If so, clean respective acks */
erase_if(to_ack,
[this](std::pair<const uint32_t, ack_info_t>& elem) { return this->ue_db.count(elem.second.rnti) == 0; });
erase_if(to_ul_ack,
[this](std::pair<const uint32_t, ul_ack_info_t>& elem) { return this->ue_db.count(elem.second.rnti) == 0; });
/* Ack DL HARQs */
for (const auto& ack_it : to_ack) {
if (ack_it.second.tti != tti_info.tti_params.tti_rx) {
continue;
}
const ack_info_t& dl_ack = ack_it.second;
const srsenb::dl_harq_proc& h = ue_db[dl_ack.rnti].get_dl_harq(ack_it.second.dl_harq.get_id(), dl_ack.ue_cc_idx);
const srsenb::dl_harq_proc& hack = dl_ack.dl_harq;
CONDERROR(hack.is_empty(), "The acked DL harq was not active\n");
bool ret = false;
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; ++tb) {
if (dl_ack.dl_harq.is_empty(tb)) {
continue;
}
ret |= dl_ack_info(tti_info.tti_params.tti_rx, dl_ack.rnti, dl_ack.enb_cc_idx, tb, dl_ack.ack) > 0;
}
CONDERROR(not ret, "The dl harq proc that was ACKed does not exist\n");
if (dl_ack.ack) {
CONDERROR(!h.is_empty(), "ACKed dl harq was not emptied\n");
CONDERROR(h.has_pending_retx(0, tti_info.tti_params.tti_tx_dl), "ACKed dl harq still has pending retx\n");
tester_log->info(
"DL ACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, dl_ack.rnti, dl_ack.dl_harq.get_id());
} else {
tester_log->info(
"DL NACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, dl_ack.rnti, dl_ack.dl_harq.get_id());
CONDERROR(h.is_empty() and hack.nof_retx(0) + 1 < hack.max_nof_retx(), "NACKed DL harq got emptied\n");
}
}
/* Ack UL HARQs */
for (const auto& ack_it : to_ul_ack) {
if (ack_it.first != tti_info.tti_params.tti_rx) {
continue;
}
const ul_ack_info_t& ul_ack = ack_it.second;
srsenb::ul_harq_proc* h = ue_db[ul_ack.rnti].get_ul_harq(tti_info.tti_params.tti_rx, ul_ack.ue_cc_idx);
const srsenb::ul_harq_proc& hack = ul_ack.ul_harq;
CONDERROR(h == nullptr or h->get_tti() != hack.get_tti(), "UL Harq TTI does not match the ACK TTI\n");
CONDERROR(h->is_empty(0), "The acked UL harq is not active\n");
CONDERROR(hack.is_empty(0), "The acked UL harq was not active\n");
ul_crc_info(tti_info.tti_params.tti_rx, ul_ack.rnti, ul_ack.enb_cc_idx, ul_ack.ack);
CONDERROR(!h->get_pending_data(), "UL harq lost its pending data\n");
CONDERROR(!h->has_pending_ack(), "ACK/NACKed UL harq should have a pending ACK\n");
if (ul_ack.ack) {
CONDERROR(!h->is_empty(), "ACKed UL harq did not get emptied\n");
CONDERROR(h->has_pending_retx(), "ACKed UL harq still has pending retx\n");
tester_log->info("UL ACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, ul_ack.rnti, hack.get_id());
} else {
// NACK
tester_log->info("UL NACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, ul_ack.rnti, hack.get_id());
CONDERROR(!h->is_empty() and !h->has_pending_retx(), "If NACKed, UL harq has to have pending retx\n");
CONDERROR(h->is_empty() and hack.nof_retx(0) + 1 < hack.max_nof_retx(), "Nacked UL harq did get emptied\n");
}
}
// erase processed acks
to_ack.erase(tti_info.tti_params.tti_rx);
to_ul_ack.erase(tti_info.tti_params.tti_rx);
return SRSLTE_SUCCESS;
}
int common_sched_tester::schedule_acks()
{
for (uint32_t ccidx = 0; ccidx < sched_cell_params.size(); ++ccidx) {
// schedule future acks
for (uint32_t i = 0; i < tti_info.dl_sched_result[ccidx].nof_data_elems; ++i) {
ack_info_t ack_data;
ack_data.rnti = tti_info.dl_sched_result[ccidx].data[i].dci.rnti;
ack_data.tti = FDD_HARQ_DELAY_DL_MS + tti_info.tti_params.tti_tx_dl;
ack_data.enb_cc_idx = ccidx;
ack_data.ue_cc_idx = ue_db[ack_data.rnti].get_cell_index(ccidx).second;
const srsenb::dl_harq_proc& dl_h =
ue_db[ack_data.rnti].get_dl_harq(tti_info.dl_sched_result[ccidx].data[i].dci.pid, ack_data.ue_cc_idx);
ack_data.dl_harq = dl_h;
if (ack_data.dl_harq.nof_retx(0) == 0) {
ack_data.ack = randf() > sim_args0.P_retx;
} else { // always ack after three retxs
ack_data.ack = ack_data.dl_harq.nof_retx(0) == 3;
}
// Remove harq from the ack list if there was a harq rewrite
auto it = to_ack.begin();
while (it != to_ack.end() and it->first < ack_data.tti) {
if (it->second.rnti == ack_data.rnti and it->second.dl_harq.get_id() == ack_data.dl_harq.get_id() and
it->second.ue_cc_idx == ack_data.ue_cc_idx) {
CONDERROR(it->second.tti + FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS > ack_data.tti,
"The retx dl harq id=%d was transmitted too soon\n",
ack_data.dl_harq.get_id());
auto toerase_it = it++;
to_ack.erase(toerase_it);
continue;
}
++it;
}
// add new ack to the list
to_ack.insert(std::make_pair(ack_data.tti, ack_data));
}
/* Schedule UL ACKs */
for (uint32_t i = 0; i < tti_info.ul_sched_result[ccidx].nof_dci_elems; ++i) {
const auto& pusch = tti_info.ul_sched_result[ccidx].pusch[i];
ul_ack_info_t ack_data;
ack_data.rnti = pusch.dci.rnti;
ack_data.enb_cc_idx = ccidx;
ack_data.ue_cc_idx = ue_db[ack_data.rnti].get_cell_index(ccidx).second;
ack_data.ul_harq = *ue_db[ack_data.rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, ack_data.ue_cc_idx);
ack_data.tti_tx_ul = tti_info.tti_params.tti_tx_ul;
ack_data.tti_ack = tti_info.tti_params.tti_tx_ul + FDD_HARQ_DELAY_UL_MS;
if (ack_data.ul_harq.nof_retx(0) == 0) {
ack_data.ack = randf() > sim_args0.P_retx;
} else {
ack_data.ack = ack_data.ul_harq.nof_retx(0) == 3;
}
to_ul_ack.insert(std::make_pair(ack_data.tti_tx_ul, ack_data));
}
}
return SRSLTE_SUCCESS;
}
int common_sched_tester::process_results()
{
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
TESTASSERT(ue_tester->test_all(i, tti_info.dl_sched_result[i], tti_info.ul_sched_result[i]) == SRSLTE_SUCCESS);
TESTASSERT(output_tester[i].test_all(
tti_info.tti_params, tti_info.dl_sched_result[i], tti_info.ul_sched_result[i]) == SRSLTE_SUCCESS);
}
sched_stats->process_results(tti_info.tti_params, tti_info.dl_sched_result, tti_info.ul_sched_result);
return SRSLTE_SUCCESS;
}
int common_sched_tester::process_tti_events(const tti_ev& tti_ev)
{
for (const tti_ev::user_cfg_ev& ue_ev : tti_ev.user_updates) {
// There is a new configuration
if (ue_ev.ue_cfg != nullptr) {
if (not ue_tester->user_exists(ue_ev.rnti)) {
// new user
TESTASSERT(add_user(ue_ev.rnti, *ue_ev.ue_cfg) == SRSLTE_SUCCESS);
} else {
// reconfiguration
TESTASSERT(ue_cfg(ue_ev.rnti, *ue_ev.ue_cfg) == SRSLTE_SUCCESS);
ue_tester->user_reconf(ue_ev.rnti, *ue_ev.ue_cfg);
}
}
// There is a user to remove
if (ue_ev.rem_user) {
rem_user(ue_ev.rnti);
}
// configure carriers
if (ue_ev.bearer_cfg != nullptr) {
CONDERROR(not ue_tester->user_exists(ue_ev.rnti), "User rnti=0x%x does not exist\n", ue_ev.rnti);
// TODO: Instantiate more bearers
bearer_ue_cfg(ue_ev.rnti, 0, ue_ev.bearer_cfg.get());
}
auto* user = ue_tester->get_user_state(ue_ev.rnti);
if (user != nullptr and not user->msg4_tic.is_valid() and user->msg3_tic.is_valid() and user->msg3_tic <= tic) {
// Msg3 has been received but Msg4 has not been yet transmitted
uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data();
if (pending_dl_new_data == 0) {
uint32_t lcid = 0; // Use SRB0 to schedule Msg4
dl_rlc_buffer_state(ue_ev.rnti, lcid, 50, 0);
} else {
// Let SRB0 Msg4 get fully transmitted
}
}
// push UL SRs and DL packets
if (ue_ev.buffer_ev != nullptr) {
CONDERROR(user == nullptr, "TESTER ERROR: Trying to schedule data for user that does not exist\n");
if (ue_ev.buffer_ev->dl_data > 0 and user->msg4_tic.is_valid()) {
// If Msg4 has already been tx and there DL data to transmit
uint32_t lcid = 2;
uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data();
if (user->drb_cfg_flag or pending_dl_new_data == 0) {
// If RRCSetup finished
if (not user->drb_cfg_flag) {
// setup lcid==2 bearer
sched::ue_bearer_cfg_t cfg = {};
cfg.direction = ue_bearer_cfg_t::BOTH;
ue_tester->bearer_cfg(ue_ev.rnti, 2, cfg);
bearer_ue_cfg(ue_ev.rnti, 2, &cfg);
}
// DRB is set. Update DL buffer
uint32_t tot_dl_data = pending_dl_new_data + ue_ev.buffer_ev->dl_data; // TODO: derive pending based on rx
dl_rlc_buffer_state(ue_ev.rnti, lcid, tot_dl_data, 0); // TODO: Check retx_queue
} else {
// Let SRB0 get emptied
}
}
if (ue_ev.buffer_ev->sr_data > 0 and user->drb_cfg_flag) {
uint32_t tot_ul_data =
ue_db[ue_ev.rnti].get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul) + ue_ev.buffer_ev->sr_data;
uint32_t lcid = 2;
ul_bsr(ue_ev.rnti, lcid, tot_ul_data, true);
}
}
}
return SRSLTE_SUCCESS;
}
int common_sched_tester::run_tti(const tti_ev& tti_events)
{
new_test_tti();
tester_log->info("---- tti=%u | nof_ues=%zd ----\n", tic.tti_rx(), ue_db.size());
process_tti_events(tti_events);
process_ack_txs();
before_sched();
// Call scheduler for all carriers
tti_info.dl_sched_result.resize(sched_cell_params.size());
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
dl_sched(tti_info.tti_params.tti_tx_dl, i, tti_info.dl_sched_result[i]);
}
tti_info.ul_sched_result.resize(sched_cell_params.size());
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
ul_sched(tti_info.tti_params.tti_tx_ul, i, tti_info.ul_sched_result[i]);
}
process_results();
TESTASSERT(schedule_acks() == SRSLTE_SUCCESS);
return SRSLTE_SUCCESS;
}
int common_sched_tester::test_next_ttis(const std::vector<tti_ev>& tti_events)
{
uint32_t next_idx = tic.is_valid() ? tic.total_count() - sim_args0.start_tti + 1 : 0;
for (; next_idx < tti_events.size(); ++next_idx) {
TESTASSERT(run_tti(tti_events[next_idx]) == SRSLTE_SUCCESS);
}
return SRSLTE_SUCCESS;
}