You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsenb/test/mac/scheduler_ca_test.cc

249 lines
9.1 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "lib/include/srslte/common/pdu.h"
#include "scheduler_test_common.h"
#include "scheduler_test_utils.h"
#include "srsenb/hdr/stack/mac/scheduler.h"
using namespace srsenb;
uint32_t const seed = std::chrono::system_clock::now().time_since_epoch().count();
/*******************
* Logging *
*******************/
class sched_test_log final : public srslte::test_log_filter
{
public:
sched_test_log() : srslte::test_log_filter("TEST") { exit_on_error = true; }
~sched_test_log() override { log_diagnostics(); }
void log_diagnostics() override
{
info("[TESTER] Number of assertion warnings: %u\n", warn_counter);
info("[TESTER] Number of assertion errors: %u\n", error_counter);
info("[TESTER] This was the seed: %u\n", seed);
}
};
srslte::scoped_log<sched_test_log> log_global{};
/******************************
* Scheduler Tests
*****************************/
sim_sched_args generate_default_sim_args(uint32_t nof_prb, uint32_t nof_ccs)
{
sim_sched_args sim_args;
sim_args.P_retx = 0.1;
sim_args.ue_cfg = generate_default_ue_cfg();
// setup two cells
std::vector<srsenb::sched_interface::cell_cfg_t> cell_cfg(nof_ccs, generate_default_cell_cfg(nof_prb));
cell_cfg[0].scell_list.resize(1);
cell_cfg[0].scell_list[0].enb_cc_idx = 1;
cell_cfg[0].scell_list[0].cross_carrier_scheduling = false;
cell_cfg[0].scell_list[0].ul_allowed = true;
cell_cfg[1].cell.id = 2; // id=2
cell_cfg[1].scell_list = cell_cfg[0].scell_list;
cell_cfg[1].scell_list[0].enb_cc_idx = 0;
sim_args.cell_cfg = std::move(cell_cfg);
/* Setup Derived Params */
sim_args.ue_cfg.supported_cc_list.resize(nof_ccs);
for (uint32_t i = 0; i < sim_args.ue_cfg.supported_cc_list.size(); ++i) {
sim_args.ue_cfg.supported_cc_list[i].active = true;
sim_args.ue_cfg.supported_cc_list[i].enb_cc_idx = i;
}
return sim_args;
}
struct test_scell_activation_params {
uint32_t pcell_idx = 0;
};
int test_scell_activation(test_scell_activation_params params)
{
std::array<uint32_t, 6> prb_list = {6, 15, 25, 50, 75, 100};
/* Simulation Configuration Arguments */
uint32_t nof_prb = prb_list[std::uniform_int_distribution<uint32_t>{0, 5}(get_rand_gen())];
uint32_t nof_ccs = 2;
uint32_t start_tti = 0; // rand_int(0, 10240);
/* Setup simulation arguments struct */
sim_sched_args sim_args = generate_default_sim_args(nof_prb, nof_ccs);
sim_args.sim_log = log_global.get();
sim_args.start_tti = start_tti;
/* Simulation Objects Setup */
sched_sim_event_generator generator;
// Setup scheduler
common_sched_tester tester;
tester.init(nullptr);
tester.sim_cfg(sim_args);
/* Internal configurations. Do not touch */
float ul_sr_exps[] = {1, 4}; // log rand
float dl_data_exps[] = {1, 4}; // log rand
float P_ul_sr = randf() * 0.5, P_dl = randf() * 0.5;
const uint16_t rnti1 = 70;
/* Setup Simulation */
uint32_t prach_tti = 1;
uint32_t msg4_size = 40; // TODO: Check
uint32_t duration = 1000;
// Generate Cell order
std::vector<uint32_t> cc_idxs(nof_ccs);
std::iota(cc_idxs.begin(), cc_idxs.end(), 0);
std::shuffle(cc_idxs.begin(), cc_idxs.end(), get_rand_gen());
std::iter_swap(cc_idxs.begin(), std::find(cc_idxs.begin(), cc_idxs.end(), params.pcell_idx));
/* Simulation */
// Event PRACH: PRACH takes place for "rnti1", and carrier "pcell_idx"
generator.step_until(prach_tti);
tti_ev::user_cfg_ev* user = generator.add_new_default_user(duration);
user->ue_cfg->supported_cc_list[0].enb_cc_idx = cc_idxs[0];
user->rnti = rnti1;
tester.test_next_ttis(generator.tti_events);
TESTASSERT(tester.ue_tester->user_exists(rnti1));
// Event (TTI=prach_tti+msg4_tot_delay): First Tx (Msg4). Goes in SRB0 and contains ConRes
while (not tester.ue_tester->get_user_state(rnti1)->msg3_tic.is_valid() or
tester.ue_tester->get_user_state(rnti1)->msg3_tic.tti_rx() > generator.tti_counter) {
generator.step_tti();
tester.test_next_ttis(generator.tti_events);
}
generator.step_tti();
generator.add_dl_data(rnti1, msg4_size);
tester.test_next_ttis(generator.tti_events);
// Event (20 TTIs): Data back and forth
auto generate_data = [&](uint32_t nof_ttis, float prob_dl, float prob_ul, float rand_exp) {
for (uint32_t i = 0; i < nof_ttis; ++i) {
generator.step_tti();
bool ul_flag = randf() < prob_ul, dl_flag = randf() < prob_dl;
if (dl_flag) {
float exp = dl_data_exps[0] + rand_exp * (dl_data_exps[1] - dl_data_exps[0]);
generator.add_dl_data(rnti1, pow(10, exp));
}
if (ul_flag) {
float exp = ul_sr_exps[0] + rand_exp * (ul_sr_exps[1] - ul_sr_exps[0]);
generator.add_ul_data(rnti1, pow(10, exp));
}
}
};
generate_data(20, P_dl, P_ul_sr, randf());
tester.test_next_ttis(generator.tti_events);
// Event: Reconf Complete. Activate SCells. Check if CE correctly transmitted
generator.step_tti();
user = generator.user_reconf(rnti1);
*user->ue_cfg = *tester.get_current_ue_cfg(rnti1); // use current cfg as starting point, and add more supported ccs
user->ue_cfg->supported_cc_list.resize(nof_ccs);
for (uint32_t i = 0; i < user->ue_cfg->supported_cc_list.size(); ++i) {
user->ue_cfg->supported_cc_list[i].active = true;
user->ue_cfg->supported_cc_list[i].enb_cc_idx = cc_idxs[i];
}
tester.test_next_ttis(generator.tti_events);
auto activ_list = tester.get_enb_ue_cc_map(rnti1);
for (uint32_t i = 0; i < cc_idxs.size(); ++i) {
TESTASSERT(activ_list[i] >= 0);
}
// TEST: When a DL newtx takes place, it should also encode the CE
for (uint32_t i = 0; i < 100; ++i) {
if (tester.tti_info.dl_sched_result[params.pcell_idx].nof_data_elems > 0) {
// DL data was allocated
if (tester.tti_info.dl_sched_result[params.pcell_idx].data[0].nof_pdu_elems[0] > 0) {
// it is a new DL tx
TESTASSERT(tester.tti_info.dl_sched_result[params.pcell_idx].data[0].pdu[0][0].lcid ==
srslte::sch_subh::cetype::SCELL_ACTIVATION);
break;
}
}
generator.step_tti();
tester.test_next_ttis(generator.tti_events);
}
// Event: Wait for UE to receive and ack CE. Send cqi==0, which should not activate the SCell
uint32_t cqi = 0;
for (uint32_t i = 0; i < FDD_HARQ_DELAY_UL_MS; ++i) {
tester.dl_cqi_info(tester.tti_info.tti_params.tti_rx, rnti1, 1, cqi);
generator.step_tti();
}
tester.test_next_ttis(generator.tti_events);
// The UE should now have received the CE
// Event: Generate a bit more data, it should *not* go through SCells until we send a CQI
tester.dl_cqi_info(tester.tti_info.tti_params.tti_rx, rnti1, 1, cqi);
generate_data(5, P_dl, P_ul_sr, randf());
tester.test_next_ttis(generator.tti_events);
TESTASSERT(tester.sched_stats->users[rnti1].tot_dl_sched_data[params.pcell_idx] > 0);
TESTASSERT(tester.sched_stats->users[rnti1].tot_ul_sched_data[params.pcell_idx] > 0);
for (uint32_t i = 1; i < cc_idxs.size(); ++i) {
TESTASSERT(tester.sched_stats->users[rnti1].tot_dl_sched_data[cc_idxs[i]] == 0);
TESTASSERT(tester.sched_stats->users[rnti1].tot_ul_sched_data[cc_idxs[i]] == 0);
}
// Event: Scheduler receives dl_cqi for SCell. Data should go through SCells
cqi = 14;
for (uint32_t i = 1; i < cc_idxs.size(); ++i) {
tester.dl_cqi_info(tester.tti_info.tti_params.tti_rx, rnti1, cc_idxs[i], cqi);
}
generate_data(10, 1.0, 1.0, 1.0);
tester.test_next_ttis(generator.tti_events);
for (const auto& c : cc_idxs) {
TESTASSERT(tester.sched_stats->users[rnti1].tot_dl_sched_data[c] > 0);
TESTASSERT(tester.sched_stats->users[rnti1].tot_ul_sched_data[c] > 0);
}
log_global->info("[TESTER] Sim1 finished successfully\n");
return SRSLTE_SUCCESS;
}
int main()
{
// Setup rand seed
set_randseed(seed);
srslte::logmap::set_default_log_level(srslte::LOG_LEVEL_INFO);
printf("[TESTER] This is the chosen seed: %u\n", seed);
uint32_t N_runs = 20;
for (uint32_t n = 0; n < N_runs; ++n) {
printf("Sim run number: %u\n", n + 1);
test_scell_activation_params p = {};
p.pcell_idx = 0;
TESTASSERT(test_scell_activation(p) == SRSLTE_SUCCESS);
p = {};
p.pcell_idx = 1;
TESTASSERT(test_scell_activation(p) == SRSLTE_SUCCESS);
}
return 0;
}