You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

878 lines
30 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/******************************************************************************
* File: interfaces.h
* Description: Abstract base class interfaces provided by layers
* to other layers.
*****************************************************************************/
#ifndef SRSLTE_UE_INTERFACES_H
#define SRSLTE_UE_INTERFACES_H
#include <string>
#include "rrc_interface_types.h"
#include "srslte/asn1/liblte_mme.h"
#include "srslte/asn1/rrc_asn1.h"
#include "srslte/common/common.h"
#include "srslte/common/interfaces_common.h"
#include "srslte/common/security.h"
#include "srslte/phy/channel/channel.h"
#include "srslte/phy/rf/rf.h"
namespace srsue {
typedef enum {
AUTH_OK,
AUTH_FAILED,
AUTH_SYNCH_FAILURE
} auth_result_t;
// USIM interface for NAS
class usim_interface_nas
{
public:
virtual std::string get_imsi_str() = 0;
virtual std::string get_imei_str() = 0;
virtual bool get_imsi_vec(uint8_t* imsi_, uint32_t n) = 0;
virtual bool get_imei_vec(uint8_t* imei_, uint32_t n) = 0;
virtual bool get_home_plmn_id(srslte::plmn_id_t* home_plmn_id) = 0;
virtual auth_result_t generate_authentication_response(uint8_t *rand,
uint8_t *autn_enb,
uint16_t mcc,
uint16_t mnc,
uint8_t *res,
int *res_len,
uint8_t *k_asme) = 0;
virtual void generate_nas_keys(uint8_t *k_asme,
uint8_t *k_nas_enc,
uint8_t *k_nas_int,
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo,
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo) = 0;
};
// USIM interface for RRC
class usim_interface_rrc
{
public:
virtual void generate_as_keys(uint8_t *k_asme,
uint32_t count_ul,
uint8_t *k_rrc_enc,
uint8_t *k_rrc_int,
uint8_t *k_up_enc,
uint8_t *k_up_int,
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo,
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo) = 0;
virtual void generate_as_keys_ho(uint32_t pci,
uint32_t earfcn,
int ncc,
uint8_t *k_rrc_enc,
uint8_t *k_rrc_int,
uint8_t *k_up_enc,
uint8_t *k_up_int,
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo,
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo) = 0;
};
// GW interface for NAS
class gw_interface_nas
{
public:
virtual int setup_if_addr(uint32_t lcid, uint8_t pdn_type, uint32_t ip_addr, uint8_t* ipv6_if_id, char* err_str) = 0;
virtual int apply_traffic_flow_template(const uint8_t& eps_bearer_id,
const uint8_t& lcid,
const LIBLTE_MME_TRAFFIC_FLOW_TEMPLATE_STRUCT* tft) = 0;
};
// GW interface for RRC
class gw_interface_rrc
{
public:
virtual void add_mch_port(uint32_t lcid, uint32_t port) = 0;
};
// GW interface for PDCP
class gw_interface_pdcp
{
public:
virtual void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
virtual void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
};
// NAS interface for RRC
class nas_interface_rrc
{
public:
typedef enum {
BARRING_NONE = 0,
BARRING_MO_DATA,
BARRING_MO_SIGNALLING,
BARRING_MT,
BARRING_ALL
} barring_t;
virtual void leave_connected() = 0;
virtual void set_barring(barring_t barring) = 0;
virtual void paging(srslte::s_tmsi_t* ue_identity) = 0;
virtual bool is_attached() = 0;
virtual void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
virtual uint32_t get_k_enb_count() = 0;
virtual bool get_k_asme(uint8_t* k_asme_, uint32_t n) = 0;
virtual uint32_t get_ipv4_addr() = 0;
virtual bool get_ipv6_addr(uint8_t* ipv6_addr) = 0;
};
// NAS interface for UE
class nas_interface_ue
{
public:
virtual bool attach_request() = 0;
virtual bool detach_request() = 0;
};
// NAS interface for UE
class nas_interface_gw
{
public:
virtual bool attach_request() = 0;
};
// RRC interface for MAC
class rrc_interface_mac_common
{
public:
virtual void ra_problem() = 0;
};
class rrc_interface_mac : public rrc_interface_mac_common
{
public:
virtual void ho_ra_completed(bool ra_successful) = 0;
virtual void release_pucch_srs() = 0;
};
// RRC interface for PHY
class rrc_interface_phy_lte
{
public:
virtual void in_sync() = 0;
virtual void out_of_sync() = 0;
virtual void new_phy_meas(float rsrp, float rsrq, uint32_t tti, int earfcn = -1, int pci = -1) = 0;
};
// RRC interface for NAS
class rrc_interface_nas
{
public:
typedef struct {
srslte::plmn_id_t plmn_id;
uint16_t tac;
} found_plmn_t;
const static int MAX_FOUND_PLMNS = 16;
virtual void write_sdu(srslte::unique_byte_buffer_t sdu) = 0;
virtual uint16_t get_mcc() = 0;
virtual uint16_t get_mnc() = 0;
virtual void enable_capabilities() = 0;
virtual int plmn_search(found_plmn_t found_plmns[MAX_FOUND_PLMNS]) = 0;
virtual void plmn_select(srslte::plmn_id_t plmn_id) = 0;
virtual bool connection_request(srslte::establishment_cause_t cause,
srslte::unique_byte_buffer_t dedicatedInfoNAS) = 0;
virtual void set_ue_identity(srslte::s_tmsi_t s_tmsi) = 0;
virtual bool is_connected() = 0;
virtual std::string get_rb_name(uint32_t lcid) = 0;
virtual uint32_t get_lcid_for_eps_bearer(const uint32_t& eps_bearer_id) = 0;
};
// RRC interface for PDCP
class rrc_interface_pdcp
{
public:
virtual void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
virtual void write_pdu_bcch_bch(srslte::unique_byte_buffer_t pdu) = 0;
virtual void write_pdu_bcch_dlsch(srslte::unique_byte_buffer_t pdu) = 0;
virtual void write_pdu_pcch(srslte::unique_byte_buffer_t pdu) = 0;
virtual void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
virtual std::string get_rb_name(uint32_t lcid) = 0;
};
// RRC interface for RLC
class rrc_interface_rlc
{
public:
virtual void max_retx_attempted() = 0;
virtual std::string get_rb_name(uint32_t lcid) = 0;
virtual void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
};
// PDCP interface for RRC
class pdcp_interface_rrc
{
public:
virtual void reestablish() = 0;
virtual void reestablish(uint32_t lcid) = 0;
virtual void reset() = 0;
virtual void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking = true) = 0;
virtual void add_bearer(uint32_t lcid,
srslte::srslte_pdcp_config_lte_t cnfg = srslte::srslte_pdcp_config_lte_t()) = 0;
virtual void change_lcid(uint32_t old_lcid, uint32_t new_lcid) = 0;
virtual void config_security(uint32_t lcid,
uint8_t* k_rrc_enc_,
uint8_t* k_rrc_int_,
uint8_t* k_up_enc_,
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo_,
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo_) = 0;
virtual void config_security_all(uint8_t* k_rrc_enc_,
uint8_t* k_rrc_int_,
uint8_t* k_up_enc_,
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo_,
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo_) = 0;
virtual void enable_integrity(uint32_t lcid) = 0;
virtual void enable_encryption(uint32_t lcid) = 0;
};
// PDCP interface for RLC
class pdcp_interface_rlc
{
public:
/* RLC calls PDCP to push a PDCP PDU. */
virtual void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
virtual void write_pdu_bcch_bch(srslte::unique_byte_buffer_t sdu) = 0;
virtual void write_pdu_bcch_dlsch(srslte::unique_byte_buffer_t sdu) = 0;
virtual void write_pdu_pcch(srslte::unique_byte_buffer_t sdu) = 0;
virtual void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
};
class pdcp_interface_gw
{
public:
virtual void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking) = 0;
virtual bool is_lcid_enabled(uint32_t lcid) = 0;
};
// RLC interface for RRC
class rlc_interface_rrc
{
public:
virtual void reset() = 0;
virtual void reestablish() = 0;
virtual void reestablish(uint32_t lcid) = 0;
virtual void add_bearer(uint32_t lcid, srslte::rlc_config_t cnfg) = 0;
virtual void add_bearer_mrb(uint32_t lcid) = 0;
virtual void del_bearer(uint32_t lcid) = 0;
virtual void suspend_bearer(uint32_t lcid) = 0;
virtual void resume_bearer(uint32_t lcid) = 0;
virtual void change_lcid(uint32_t old_lcid, uint32_t new_lcid) = 0;
virtual bool has_bearer(uint32_t lcid) = 0;
virtual bool has_data(const uint32_t lcid) = 0;
virtual void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking = true) = 0;
};
// RLC interface for PDCP
class rlc_interface_pdcp
{
public:
/* PDCP calls RLC to push an RLC SDU. SDU gets placed into the RLC buffer and MAC pulls
* RLC PDUs according to TB size. */
virtual void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking = true) = 0;
virtual bool rb_is_um(uint32_t lcid) = 0;
};
//RLC interface for MAC
class rlc_interface_mac : public srslte::read_pdu_interface
{
public:
/* MAC calls has_data() to query whether a logical channel has data to transmit (without
* knowing how much. This function should return quickly. */
virtual bool has_data(const uint32_t lcid) = 0;
/* MAC calls RLC to get the buffer state for a logical channel. */
virtual uint32_t get_buffer_state(const uint32_t lcid) = 0;
const static int MAX_PDU_SEGMENTS = 20;
/* MAC calls RLC to get RLC segment of nof_bytes length.
* Segmentation happens in this function. RLC PDU is stored in payload. */
virtual int read_pdu(uint32_t lcid, uint8_t *payload, uint32_t nof_bytes) = 0;
/* MAC calls RLC to push an RLC PDU. This function is called from an independent MAC thread.
* PDU gets placed into the buffer and higher layer thread gets notified. */
virtual void write_pdu(uint32_t lcid, uint8_t *payload, uint32_t nof_bytes) = 0;
virtual void write_pdu_bcch_bch(uint8_t *payload, uint32_t nof_bytes) = 0;
virtual void write_pdu_bcch_dlsch(uint8_t *payload, uint32_t nof_bytes) = 0;
virtual void write_pdu_pcch(uint8_t *payload, uint32_t nof_bytes) = 0;
virtual void write_pdu_mch(uint32_t lcid, uint8_t *payload, uint32_t nof_bytes) = 0;
};
//BSR interface for MUX
class bsr_interface_mux
{
public:
typedef enum {
LONG_BSR,
SHORT_BSR,
TRUNC_BSR
} bsr_format_t;
typedef struct {
bsr_format_t format;
uint32_t buff_size[4];
} bsr_t;
/* MUX calls BSR to check if it can fit a BSR into PDU */
virtual bool need_to_send_bsr_on_ul_grant(uint32_t grant_size, bsr_t *bsr) = 0;
/* MUX calls BSR to let it generate a padding BSR if there is space in PDU */
virtual bool generate_padding_bsr(uint32_t nof_padding_bytes, bsr_t *bsr) = 0;
};
/** MAC interface
*
*/
/* Interface PHY -> MAC */
class mac_interface_phy_lte
{
public:
typedef struct {
uint32_t nof_mbsfn_services;
} mac_phy_cfg_mbsfn_t;
typedef struct {
uint32_t tbs;
bool ndi;
bool ndi_present;
int rv;
} mac_tb_t;
typedef struct {
mac_tb_t tb[SRSLTE_MAX_TB];
uint32_t pid;
uint16_t rnti;
bool is_sps_release;
} mac_grant_dl_t;
typedef struct {
mac_tb_t tb;
uint32_t pid;
uint16_t rnti;
bool phich_available;
bool hi_value;
} mac_grant_ul_t;
typedef struct {
bool enabled;
uint32_t rv;
uint8_t* payload;
union {
srslte_softbuffer_rx_t* rx;
srslte_softbuffer_tx_t* tx;
} softbuffer;
} tb_action_t;
typedef struct {
tb_action_t tb[SRSLTE_MAX_TB];
bool generate_ack;
} tb_action_dl_t;
typedef struct {
tb_action_t tb;
uint32_t current_tx_nb;
bool expect_ack;
} tb_action_ul_t;
/* Query the MAC for the current RNTI to look for
*/
virtual uint16_t get_dl_sched_rnti(uint32_t tti) = 0;
virtual uint16_t get_ul_sched_rnti(uint32_t tti) = 0;
/* Indicate reception of UL dci.
* payload_ptr points to memory where MAC PDU must be written by MAC layer */
virtual void new_grant_ul(uint32_t cc_idx, mac_grant_ul_t grant, tb_action_ul_t* action) = 0;
/* Indicate reception of DL dci. */
virtual void new_grant_dl(uint32_t cc_idx, mac_grant_dl_t grant, tb_action_dl_t* action) = 0;
/* Indicate successful decoding of PDSCH AND PCH TB. */
virtual void tb_decoded(uint32_t cc_idx, mac_grant_dl_t grant, bool ack[SRSLTE_MAX_CODEWORDS]) = 0;
/* Indicate successful decoding of BCH TB through PBCH */
virtual void bch_decoded_ok(uint8_t* payload, uint32_t len) = 0;
/* Indicate successful decoding of MCH TB through PMCH */
virtual void mch_decoded(uint32_t len, bool crc) = 0;
/* Obtain action for a new MCH subframe. */
virtual void new_mch_dl(srslte_pdsch_grant_t phy_grant, tb_action_dl_t* action) = 0;
/* Communicate the number of mbsfn services available */
virtual void set_mbsfn_config(uint32_t nof_mbsfn_services) = 0;
/* Indicate new TTI */
virtual void run_tti(const uint32_t tti) = 0;
};
/* Interface RRC -> MAC shared between different RATs */
class mac_interface_rrc_common
{
public:
// Class to handle UE specific RNTIs between RRC and MAC
typedef struct {
uint16_t crnti;
uint16_t rar_rnti;
uint16_t temp_rnti;
uint16_t tpc_rnti;
uint16_t sps_rnti;
uint64_t contention_id;
} ue_rnti_t;
typedef struct ul_harq_cfg_t {
uint32_t max_harq_msg3_tx;
uint32_t max_harq_tx;
ul_harq_cfg_t() { reset(); }
void reset()
{
max_harq_msg3_tx = 5;
max_harq_tx = 5;
}
} ul_harq_cfg_t;
};
/* Interface RRC -> MAC */
class mac_interface_rrc : public mac_interface_rrc_common
{
public:
typedef struct bsr_cfg_t {
int periodic_timer;
int retx_timer;
bsr_cfg_t() { reset(); }
void reset()
{
periodic_timer = -1;
retx_timer = 2560;
}
} bsr_cfg_t;
typedef struct phr_cfg_t {
bool enabled;
int periodic_timer;
int prohibit_timer;
int db_pathloss_change;
bool extended;
phr_cfg_t() { reset(); }
void reset()
{
enabled = false;
periodic_timer = -1;
prohibit_timer = -1;
db_pathloss_change = -1;
extended = false;
}
} phr_cfg_t;
typedef struct sr_cfg_t {
bool enabled;
int dsr_transmax;
sr_cfg_t() { reset(); }
void reset()
{
enabled = false;
dsr_transmax = 0;
}
} sr_cfg_t;
typedef struct rach_cfg_t {
bool enabled;
uint32_t nof_preambles;
uint32_t nof_groupA_preambles;
int32_t messagePowerOffsetGroupB;
uint32_t messageSizeGroupA;
uint32_t responseWindowSize;
uint32_t powerRampingStep;
uint32_t preambleTransMax;
int32_t iniReceivedTargetPower;
uint32_t contentionResolutionTimer;
uint32_t new_ra_msg_len;
rach_cfg_t() { reset(); }
void reset()
{
enabled = false;
nof_preambles = 0;
nof_groupA_preambles = 0;
messagePowerOffsetGroupB = 0;
messageSizeGroupA = 0;
responseWindowSize = 0;
powerRampingStep = 0;
preambleTransMax = 0;
iniReceivedTargetPower = 0;
contentionResolutionTimer = 0;
new_ra_msg_len = 0;
}
} rach_cfg_t;
class mac_cfg_t
{
public:
// Default constructor with default values as in 36.331 9.2.2
mac_cfg_t() { set_defaults(); }
void set_defaults()
{
rach_cfg.reset();
set_mac_main_cfg_default();
}
void set_mac_main_cfg_default()
{
bsr_cfg.reset();
phr_cfg.reset();
sr_cfg.reset();
harq_cfg.reset();
time_alignment_timer = -1;
}
// Called only if section is present
void set_sched_request_cfg(asn1::rrc::sched_request_cfg_c& cfg)
{
sr_cfg.enabled = cfg.type() == asn1::rrc::setup_e::setup;
if (sr_cfg.enabled) {
sr_cfg.dsr_transmax = cfg.setup().dsr_trans_max.to_number();
}
}
// MAC-MainConfig section is always present
void set_mac_main_cfg(asn1::rrc::mac_main_cfg_s& cfg)
{
// Update values only if each section is present
if (cfg.phr_cfg_present) {
phr_cfg.enabled = cfg.phr_cfg.type() == asn1::rrc::setup_e::setup;
if (phr_cfg.enabled) {
phr_cfg.prohibit_timer = cfg.phr_cfg.setup().prohibit_phr_timer.to_number();
phr_cfg.periodic_timer = cfg.phr_cfg.setup().periodic_phr_timer.to_number();
phr_cfg.db_pathloss_change = cfg.phr_cfg.setup().dl_pathloss_change.to_number();
}
}
if (cfg.mac_main_cfg_v1020_present) {
typedef asn1::rrc::mac_main_cfg_s::mac_main_cfg_v1020_s_ mac_main_cfg_v1020_t;
mac_main_cfg_v1020_t* mac_main_cfg_v1020 = cfg.mac_main_cfg_v1020.get();
phr_cfg.extended = mac_main_cfg_v1020->extended_phr_r10_present;
}
if (cfg.ul_sch_cfg_present) {
bsr_cfg.periodic_timer = cfg.ul_sch_cfg.periodic_bsr_timer.to_number();
bsr_cfg.retx_timer = cfg.ul_sch_cfg.retx_bsr_timer.to_number();
if (cfg.ul_sch_cfg.max_harq_tx_present) {
harq_cfg.max_harq_tx = cfg.ul_sch_cfg.max_harq_tx.to_number();
}
}
// TimeAlignmentDedicated overwrites Common??
time_alignment_timer = cfg.time_align_timer_ded.to_number();
}
// RACH-Common section is always present
void set_rach_cfg_common(asn1::rrc::rach_cfg_common_s& cfg)
{
// Preamble info
rach_cfg.nof_preambles = cfg.preamb_info.nof_ra_preambs.to_number();
if (cfg.preamb_info.preambs_group_a_cfg_present) {
rach_cfg.nof_groupA_preambles = cfg.preamb_info.preambs_group_a_cfg.size_of_ra_preambs_group_a.to_number();
rach_cfg.messageSizeGroupA = cfg.preamb_info.preambs_group_a_cfg.msg_size_group_a.to_number();
rach_cfg.messagePowerOffsetGroupB = cfg.preamb_info.preambs_group_a_cfg.msg_pwr_offset_group_b.to_number();
} else {
rach_cfg.nof_groupA_preambles = 0;
}
// Power ramping
rach_cfg.powerRampingStep = cfg.pwr_ramp_params.pwr_ramp_step.to_number();
rach_cfg.iniReceivedTargetPower = cfg.pwr_ramp_params.preamb_init_rx_target_pwr.to_number();
// Supervision info
rach_cfg.preambleTransMax = cfg.ra_supervision_info.preamb_trans_max.to_number();
rach_cfg.responseWindowSize = cfg.ra_supervision_info.ra_resp_win_size.to_number();
rach_cfg.contentionResolutionTimer = cfg.ra_supervision_info.mac_contention_resolution_timer.to_number();
// HARQ Msg3
harq_cfg.max_harq_msg3_tx = cfg.max_harq_msg3_tx;
}
void set_time_alignment(asn1::rrc::time_align_timer_e time_alignment_timer)
{
this->time_alignment_timer = time_alignment_timer.to_number();
}
bsr_cfg_t& get_bsr_cfg() { return bsr_cfg; }
phr_cfg_t& get_phr_cfg() { return phr_cfg; }
rach_cfg_t& get_rach_cfg() { return rach_cfg; }
sr_cfg_t& get_sr_cfg() { return sr_cfg; }
ul_harq_cfg_t& get_harq_cfg() { return harq_cfg; }
int get_time_alignment_timer() { return time_alignment_timer; }
private:
bsr_cfg_t bsr_cfg;
phr_cfg_t phr_cfg;
sr_cfg_t sr_cfg;
rach_cfg_t rach_cfg;
ul_harq_cfg_t harq_cfg;
int time_alignment_timer;
};
virtual void clear_rntis() = 0;
/* Instructs the MAC to start receiving BCCH */
virtual void bcch_start_rx(int si_window_start, int si_window_length) = 0;
virtual void bcch_stop_rx() = 0;
/* Instructs the MAC to start receiving PCCH */
virtual void pcch_start_rx() = 0;
/* RRC configures a logical channel */
virtual void setup_lcid(uint32_t lcid, uint32_t lcg, uint32_t priority, int PBR_x_tti, uint32_t BSD) = 0;
/* Instructs the MAC to start receiving an MCH */
virtual void mch_start_rx(uint32_t lcid) = 0;
virtual uint32_t get_current_tti() = 0;
virtual void set_config(mac_cfg_t& mac_cfg) = 0;
virtual void get_rntis(ue_rnti_t *rntis) = 0;
virtual void set_contention_id(uint64_t uecri) = 0;
virtual void set_ho_rnti(uint16_t crnti, uint16_t target_pci) = 0;
virtual void start_noncont_ho(uint32_t preamble_index, uint32_t prach_mask) = 0;
virtual void start_cont_ho() = 0;
virtual void reconfiguration(const uint32_t& cc_idx, const bool& enable) = 0;
virtual void reset() = 0;
virtual void wait_uplink() = 0;
};
/** PHY interface
*
*/
typedef struct {
uint32_t radio_idx;
uint32_t channel_idx;
} carrier_map_t;
typedef struct {
std::string type;
srslte::phy_log_args_t log;
std::string dl_earfcn; // comma-separated list of EARFCNs
std::vector<uint32_t> earfcn_list; // vectorized version of dl_earfcn that gets populated during init
float dl_freq;
float ul_freq;
bool ul_pwr_ctrl_en;
float prach_gain;
int pdsch_max_its;
bool attach_enable_64qam;
int nof_phy_threads;
int worker_cpu_mask;
int sync_cpu_affinity;
uint32_t nof_carriers;
uint32_t nof_radios;
uint32_t nof_rx_ant;
uint32_t nof_rf_channels;
carrier_map_t carrier_map[SRSLTE_MAX_CARRIERS];
std::string equalizer_mode;
int cqi_max;
int cqi_fixed;
float snr_ema_coeff;
std::string snr_estim_alg;
bool agc_enable;
bool cfo_is_doppler;
bool cfo_integer_enabled;
float cfo_correct_tol_hz;
float cfo_pss_ema;
float cfo_ref_ema;
float cfo_loop_bw_pss;
float cfo_loop_bw_ref;
float cfo_loop_ref_min;
float cfo_loop_pss_tol;
float sfo_ema;
uint32_t sfo_correct_period;
uint32_t cfo_loop_pss_conv;
uint32_t cfo_ref_mask;
bool interpolate_subframe_enabled;
bool estimator_fil_auto;
float estimator_fil_stddev;
uint32_t estimator_fil_order;
float snr_to_cqi_offset;
std::string sss_algorithm;
bool sic_pss_enabled;
float rx_gain_offset;
bool pdsch_csi_enabled;
bool pdsch_8bit_decoder;
uint32_t intra_freq_meas_len_ms;
uint32_t intra_freq_meas_period_ms;
bool pregenerate_signals;
float force_ul_amplitude;
srslte::channel::args_t dl_channel_args;
srslte::channel::args_t ul_channel_args;
} phy_args_t;
/* RAT agnostic Interface MAC -> PHY */
class phy_interface_mac_common
{
public:
/* Sets a C-RNTI allowing the PHY to pregenerate signals if necessary */
virtual void set_crnti(uint16_t rnti) = 0;
/* Time advance commands */
virtual void set_timeadv_rar(uint32_t ta_cmd) = 0;
virtual void set_timeadv(uint32_t ta_cmd) = 0;
/* Activate / Disactivate SCell*/
virtual void set_activation_deactivation_scell(uint32_t cmd) = 0;
/* Sets RAR dci payload */
virtual void set_rar_grant(uint8_t grant_payload[SRSLTE_RAR_GRANT_LEN], uint16_t rnti) = 0;
virtual uint32_t get_current_tti() = 0;
virtual float get_phr() = 0;
virtual float get_pathloss_db() = 0;
};
/* Interface MAC -> PHY */
class phy_interface_mac_lte : public phy_interface_mac_common
{
public:
typedef struct {
bool is_transmitted;
uint32_t tti_ra;
uint32_t f_id;
uint32_t preamble_format;
} prach_info_t;
/* Configure PRACH using parameters written by RRC */
virtual void configure_prach_params() = 0;
virtual void prach_send(uint32_t preamble_idx, int allowed_subframe, float target_power_dbm) = 0;
virtual prach_info_t prach_get_info() = 0;
/* Indicates the transmission of a SR signal in the next opportunity */
virtual void sr_send() = 0;
virtual int sr_last_tx_tti() = 0;
virtual void set_mch_period_stop(uint32_t stop) = 0;
};
class phy_interface_rrc_lte
{
public:
struct phy_cfg_common_t {
asn1::rrc::prach_cfg_sib_s prach_cnfg;
asn1::rrc::pdsch_cfg_common_s pdsch_cnfg;
asn1::rrc::pusch_cfg_common_s pusch_cnfg;
asn1::rrc::phich_cfg_s phich_cnfg;
asn1::rrc::pucch_cfg_common_s pucch_cnfg;
asn1::rrc::srs_ul_cfg_common_c srs_ul_cnfg;
asn1::rrc::ul_pwr_ctrl_common_s ul_pwr_ctrl;
asn1::rrc::tdd_cfg_s tdd_cnfg;
asn1::rrc::srs_ant_port_e ant_info;
bool rrc_enable_64qam;
};
struct phy_cfg_mbsfn_t {
asn1::rrc::mbsfn_sf_cfg_s mbsfn_subfr_cnfg;
asn1::rrc::mbms_notif_cfg_r9_s mbsfn_notification_cnfg;
asn1::rrc::mbsfn_area_info_r9_s mbsfn_area_info;
asn1::rrc::mcch_msg_s mcch;
};
typedef struct {
asn1::rrc::phys_cfg_ded_s dedicated;
phy_cfg_common_t common;
phy_cfg_mbsfn_t mbsfn;
} phy_cfg_t;
virtual void get_current_cell(srslte_cell_t *cell, uint32_t *current_earfcn = NULL) = 0;
virtual uint32_t get_current_earfcn() = 0;
virtual uint32_t get_current_pci() = 0;
virtual void set_config(phy_cfg_t* config) = 0;
virtual void set_config_scell(asn1::rrc::scell_to_add_mod_r10_s* scell_config) = 0;
virtual void set_config_tdd(asn1::rrc::tdd_cfg_s* tdd) = 0;
virtual void set_config_mbsfn_sib2(asn1::rrc::sib_type2_s* sib2) = 0;
virtual void set_config_mbsfn_sib13(asn1::rrc::sib_type13_r9_s* sib13) = 0;
virtual void set_config_mbsfn_mcch(asn1::rrc::mcch_msg_s* mcch) = 0;
/* Measurements interface */
virtual void meas_reset() = 0;
virtual int meas_start(uint32_t earfcn, int pci = -1) = 0;
virtual int meas_stop(uint32_t earfcn, int pci = -1) = 0;
typedef struct {
enum {CELL_FOUND = 0, CELL_NOT_FOUND, ERROR} found;
enum { MORE_FREQS = 0, NO_MORE_FREQS } last_freq;
} cell_search_ret_t;
typedef struct {
srslte_cell_t cell;
uint32_t earfcn;
} phy_cell_t;
/* Cell search and selection procedures */
virtual cell_search_ret_t cell_search(phy_cell_t *cell) = 0;
virtual bool cell_select(phy_cell_t *cell = NULL) = 0;
virtual bool cell_is_camping() = 0;
virtual void reset() = 0;
virtual void enable_pregen_signals(bool enable) = 0;
};
// STACK interface for GW
class stack_interface_gw : public pdcp_interface_gw
{
public:
virtual bool switch_on() = 0;
};
class gw_interface_stack : public gw_interface_nas, public gw_interface_rrc, public gw_interface_pdcp
{
};
// Combined interface for PHY to access stack (MAC and RRC)
class stack_interface_phy_lte : public mac_interface_phy_lte, public rrc_interface_phy_lte
{
};
// Combined interface for stack (MAC and RRC) to access PHY
class phy_interface_stack_lte : public phy_interface_mac_lte, public phy_interface_rrc_lte
{
};
} // namespace srsue
#endif // SRSLTE_UE_INTERFACES_H