You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1475 lines
40 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "upper/rlc_am.h"
#include <iostream>
#include <sstream>
#define MOD 1024
#define RX_MOD_BASE(x) (x-vr_r)%1024
#define TX_MOD_BASE(x) (x-vt_a)%1024
using namespace srslte;
namespace srsue{
rlc_am::rlc_am() : tx_sdu_queue(16)
{
tx_sdu = NULL;
rx_sdu = NULL;
pool = byte_buffer_pool::get_instance();
pthread_mutex_init(&mutex, NULL);
vt_a = 0;
vt_ms = RLC_AM_WINDOW_SIZE;
vt_s = 0;
poll_sn = 0;
vr_r = 0;
vr_mr = RLC_AM_WINDOW_SIZE;
vr_x = 0;
vr_ms = 0;
vr_h = 0;
pdu_without_poll = 0;
byte_without_poll = 0;
poll_received = false;
do_status = false;
}
void rlc_am::init(srslte::log *log_,
uint32_t lcid_,
pdcp_interface_rlc *pdcp_,
rrc_interface_rlc *rrc_,
mac_interface_timers *mac_timers)
{
log = log_;
lcid = lcid_;
pdcp = pdcp_;
rrc = rrc_;
}
void rlc_am::configure(LIBLTE_RRC_RLC_CONFIG_STRUCT *cnfg)
{
t_poll_retx = liblte_rrc_t_poll_retransmit_num[cnfg->ul_am_rlc.t_poll_retx];
poll_pdu = liblte_rrc_poll_pdu_num[cnfg->ul_am_rlc.poll_pdu];
poll_byte = liblte_rrc_poll_byte_num[cnfg->ul_am_rlc.poll_byte]*1000; // KB
max_retx_thresh = liblte_rrc_max_retx_threshold_num[cnfg->ul_am_rlc.max_retx_thresh];
t_reordering = liblte_rrc_t_reordering_num[cnfg->dl_am_rlc.t_reordering];
t_status_prohibit = liblte_rrc_t_status_prohibit_num[cnfg->dl_am_rlc.t_status_prohibit];
log->info("%s configured: t_poll_retx=%d, poll_pdu=%d, poll_byte=%d, max_retx_thresh=%d, "
"t_reordering=%d, t_status_prohibit=%d\n",
rb_id_text[lcid], t_poll_retx, poll_pdu, poll_byte, max_retx_thresh,
t_reordering, t_status_prohibit);
}
void rlc_am::empty_queue() {
// Drop all messages in TX SDU queue
byte_buffer_t *buf;
while(tx_sdu_queue.size() > 0) {
tx_sdu_queue.read(&buf);
pool->deallocate(buf);
}
}
void rlc_am::reset()
{
// Empty tx_sdu_queue before locking the mutex
empty_queue();
pthread_mutex_lock(&mutex);
reordering_timeout.reset();
if(tx_sdu)
tx_sdu->reset();
if(rx_sdu)
rx_sdu->reset();
vt_a = 0;
vt_ms = RLC_AM_WINDOW_SIZE;
vt_s = 0;
poll_sn = 0;
vr_r = 0;
vr_mr = RLC_AM_WINDOW_SIZE;
vr_x = 0;
vr_ms = 0;
vr_h = 0;
pdu_without_poll = 0;
byte_without_poll = 0;
poll_received = false;
do_status = false;
// Drop all messages in RX segments
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator rxsegsit;
std::list<rlc_amd_rx_pdu_t>::iterator segit;
for(rxsegsit = rx_segments.begin(); rxsegsit != rx_segments.end(); rxsegsit++) {
std::list<rlc_amd_rx_pdu_t> l = rxsegsit->second.segments;
for(segit = l.begin(); segit != l.end(); segit++) {
pool->deallocate(segit->buf);
}
l.clear();
}
rx_segments.clear();
// Drop all messages in RX window
std::map<uint32_t, rlc_amd_rx_pdu_t>::iterator rxit;
for(rxit = rx_window.begin(); rxit != rx_window.end(); rxit++) {
pool->deallocate(rxit->second.buf);
}
rx_window.clear();
// Drop all messages in TX window
std::map<uint32_t, rlc_amd_tx_pdu_t>::iterator txit;
for(txit = tx_window.begin(); txit != tx_window.end(); txit++) {
pool->deallocate(txit->second.buf);
}
tx_window.clear();
// Drop all messages in RETX queue
retx_queue.clear();
pthread_mutex_unlock(&mutex);
}
rlc_mode_t rlc_am::get_mode()
{
return RLC_MODE_AM;
}
uint32_t rlc_am::get_bearer()
{
return lcid;
}
/****************************************************************************
* PDCP interface
***************************************************************************/
void rlc_am::write_sdu(byte_buffer_t *sdu)
{
log->info_hex(sdu->msg, sdu->N_bytes, "%s Tx SDU", rb_id_text[lcid]);
tx_sdu_queue.write(sdu);
}
/****************************************************************************
* MAC interface
***************************************************************************/
uint32_t rlc_am::get_total_buffer_state()
{
pthread_mutex_lock(&mutex);
uint32_t n_bytes = 0;
uint32_t n_sdus = 0;
// Bytes needed for status report
check_reordering_timeout();
if(do_status && !status_prohibited()) {
n_bytes += prepare_status();
log->debug("Buffer state - status report: %d bytes\n", n_bytes);
}
// Bytes needed for retx
if(retx_queue.size() > 0) {
rlc_amd_retx_t retx = retx_queue.front();
log->debug("Buffer state - retx - SN: %d, Segment: %s, %d:%d\n", retx.sn, retx.is_segment ? "true" : "false", retx.so_start, retx.so_end);
if(tx_window.end() != tx_window.find(retx.sn)) {
n_bytes += required_buffer_size(retx);
log->debug("Buffer state - retx: %d bytes\n", n_bytes);
}
}
// Bytes needed for tx SDUs
n_sdus = tx_sdu_queue.size();
n_bytes += tx_sdu_queue.size_bytes();
if(tx_sdu)
{
n_sdus++;
n_bytes += tx_sdu->N_bytes;
}
// Room needed for header extensions? (integer rounding)
if(n_sdus > 1)
n_bytes += ((n_sdus-1)*1.5)+0.5;
// Room needed for fixed header?
if(n_bytes > 0) {
n_bytes += 2;
log->debug("Buffer state - tx SDUs: %d bytes\n", n_bytes);
}
pthread_mutex_unlock(&mutex);
return n_bytes;
}
uint32_t rlc_am::get_buffer_state()
{
pthread_mutex_lock(&mutex);
uint32_t n_bytes = 0;
uint32_t n_sdus = 0;
// Bytes needed for status report
check_reordering_timeout();
if(do_status && !status_prohibited()) {
n_bytes = prepare_status();
log->debug("Buffer state - status report: %d bytes\n", n_bytes);
goto unlock_and_return;
}
// Bytes needed for retx
if(retx_queue.size() > 0) {
rlc_amd_retx_t retx = retx_queue.front();
log->debug("Buffer state - retx - SN: %d, Segment: %s, %d:%d\n", retx.sn, retx.is_segment ? "true" : "false", retx.so_start, retx.so_end);
if(tx_window.end() != tx_window.find(retx.sn)) {
n_bytes = required_buffer_size(retx);
log->debug("Buffer state - retx: %d bytes\n", n_bytes);
goto unlock_and_return;
}
}
// Bytes needed for tx SDUs
n_sdus = tx_sdu_queue.size();
n_bytes = tx_sdu_queue.size_bytes();
if(tx_sdu)
{
n_sdus++;
n_bytes += tx_sdu->N_bytes;
}
// Room needed for header extensions? (integer rounding)
if(n_sdus > 1)
n_bytes += ((n_sdus-1)*1.5)+0.5;
// Room needed for fixed header?
if(n_bytes > 0) {
n_bytes += 2;
log->debug("Buffer state - tx SDUs: %d bytes\n", n_bytes);
}
unlock_and_return:
pthread_mutex_unlock(&mutex);
return n_bytes;
}
int rlc_am::read_pdu(uint8_t *payload, uint32_t nof_bytes)
{
pthread_mutex_lock(&mutex);
log->debug("MAC opportunity - %d bytes\n", nof_bytes);
// Tx STATUS if requested
if(do_status && !status_prohibited()) {
pthread_mutex_unlock(&mutex);
return build_status_pdu(payload, nof_bytes);
}
// RETX if required
if(retx_queue.size() > 0) {
pthread_mutex_unlock(&mutex);
return build_retx_pdu(payload, nof_bytes);
}
pthread_mutex_unlock(&mutex);
// Build a PDU from SDUs
return build_data_pdu(payload, nof_bytes);
}
void rlc_am::write_pdu(uint8_t *payload, uint32_t nof_bytes)
{
if(nof_bytes < 1)
return;
pthread_mutex_lock(&mutex);
if(rlc_am_is_control_pdu(payload)) {
handle_control_pdu(payload, nof_bytes);
} else {
rlc_amd_pdu_header_t header;
rlc_am_read_data_pdu_header(&payload, &nof_bytes, &header);
if(header.rf) {
handle_data_pdu_segment(payload, nof_bytes, header);
}else{
handle_data_pdu(payload, nof_bytes, header);
}
}
pthread_mutex_unlock(&mutex);
}
/****************************************************************************
* Timer checks
***************************************************************************/
bool rlc_am::status_prohibited()
{
return (status_prohibit_timeout.is_running() && !status_prohibit_timeout.expired());
}
bool rlc_am::poll_retx()
{
return (poll_retx_timeout.is_running() && poll_retx_timeout.expired());
}
void rlc_am::check_reordering_timeout()
{
if(reordering_timeout.is_running() && reordering_timeout.expired())
{
reordering_timeout.reset();
log->debug("%s reordering timeout expiry - updating vr_ms\n", rb_id_text[lcid]);
// 36.322 v10 Section 5.1.3.2.4
vr_ms = vr_x;
std::map<uint32_t, rlc_amd_rx_pdu_t>::iterator it = rx_window.find(vr_ms);
while(rx_window.end() != it)
{
vr_ms = (vr_ms + 1)%MOD;
it = rx_window.find(vr_ms);
}
if(poll_received)
do_status = true;
if(RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_ms))
{
reordering_timeout.start(t_reordering);
vr_x = vr_h;
}
debug_state();
}
}
/****************************************************************************
* Helpers
***************************************************************************/
bool rlc_am::poll_required()
{
if(poll_pdu > 0 && pdu_without_poll > poll_pdu)
return true;
if(poll_byte > 0 && byte_without_poll > poll_byte)
return true;
if(poll_retx())
return true;
return false;
}
int rlc_am::prepare_status()
{
status.N_nack = 0;
status.ack_sn = vr_ms;
// We don't use segment NACKs - just NACK the full PDU
uint32_t i = vr_r;
while(RX_MOD_BASE(i) < RX_MOD_BASE(vr_ms))
{
if(rx_window.find(i) == rx_window.end())
status.nacks[status.N_nack++].nack_sn = i;
i = (i + 1)%MOD;
}
return rlc_am_packed_length(&status);
}
int rlc_am::build_status_pdu(uint8_t *payload, uint32_t nof_bytes)
{
int pdu_len = rlc_am_packed_length(&status);
if(nof_bytes >= pdu_len)
{
log->info("%s Tx status PDU - %s\n",
rb_id_text[lcid], rlc_am_to_string(&status).c_str());
do_status = false;
poll_received = false;
if(t_status_prohibit > 0)
status_prohibit_timeout.start(t_status_prohibit);
debug_state();
return rlc_am_write_status_pdu(&status, payload);
}else{
log->warning("%s Cannot tx status PDU - %d bytes available, %d bytes required\n",
rb_id_text[lcid], nof_bytes, pdu_len);
return 0;
}
}
int rlc_am::build_retx_pdu(uint8_t *payload, uint32_t nof_bytes)
{
rlc_amd_retx_t retx = retx_queue.front();
// Sanity check - drop any retx SNs not present in tx_window
while(tx_window.end() == tx_window.find(retx.sn)) {
retx_queue.pop_front();
retx = retx_queue.front();
}
// Is resegmentation needed?
if(retx.is_segment || required_buffer_size(retx) > nof_bytes) {
log->debug("%s build_retx_pdu - resegmentation required\n", rb_id_text[lcid]);
return build_segment(payload, nof_bytes, retx);
}
// Update & write header
rlc_amd_pdu_header_t new_header = tx_window[retx.sn].header;
new_header.p = 0;
if(poll_required())
{
new_header.p = 1;
poll_sn = vt_s;
pdu_without_poll = 0;
byte_without_poll = 0;
poll_retx_timeout.start(t_poll_retx);
}
uint8_t *ptr = payload;
rlc_am_write_data_pdu_header(&new_header, &ptr);
memcpy(ptr, tx_window[retx.sn].buf->msg, tx_window[retx.sn].buf->N_bytes);
retx_queue.pop_front();
tx_window[retx.sn].retx_count++;
if(tx_window[retx.sn].retx_count >= max_retx_thresh)
rrc->max_retx_attempted();
log->info("%s Retx PDU scheduled for tx. SN: %d, retx count: %d\n",
rb_id_text[lcid], retx.sn, tx_window[retx.sn].retx_count);
debug_state();
return (ptr-payload) + tx_window[retx.sn].buf->N_bytes;
}
int rlc_am::build_segment(uint8_t *payload, uint32_t nof_bytes, rlc_amd_retx_t retx)
{
if(!retx.is_segment){
retx.so_start = 0;
retx.so_end = tx_window[retx.sn].buf->N_bytes;
}
// Construct new header
rlc_amd_pdu_header_t new_header;
rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header;
new_header.dc = RLC_DC_FIELD_DATA_PDU;
new_header.rf = 1;
new_header.p = 0;
new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED;
new_header.sn = old_header.sn;
new_header.lsf = 0;
new_header.so = retx.so_start;
new_header.N_li = 0;
uint32_t head_len = 0;
uint32_t pdu_space = 0;
head_len = rlc_am_packed_length(&new_header);
if(nof_bytes <= head_len)
{
log->warning("%s Cannot build a PDU segment - %d bytes available, %d bytes required for header\n",
rb_id_text[lcid], nof_bytes, head_len);
return 0;
}
pdu_space = nof_bytes-head_len;
if(pdu_space < (retx.so_end-retx.so_start))
retx.so_end = retx.so_start+pdu_space;
// Need to rebuild the li table & update fi based on so_start and so_end
if(retx.so_start == 0 && rlc_am_start_aligned(old_header.fi))
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned
uint32_t lower = 0;
uint32_t upper = 0;
uint32_t li = 0;
for(int i=0; i<old_header.N_li; i++) {
if(lower >= retx.so_end)
break;
upper += old_header.li[i];
head_len = rlc_am_packed_length(&new_header);
pdu_space = nof_bytes-head_len;
if(pdu_space < (retx.so_end-retx.so_start))
retx.so_end = retx.so_start+pdu_space;
if(upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed
li = upper - lower;
if(upper > retx.so_end)
li -= upper - retx.so_end;
if(lower < retx.so_start)
li -= retx.so_start - lower;
if(lower > 0 && lower == retx.so_start)
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU
if(upper == retx.so_end) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
new_header.li[new_header.N_li++] = li;
}
lower += old_header.li[i];
}
// Update retx_queue
if(tx_window[retx.sn].buf->N_bytes == retx.so_end) {
retx_queue.pop_front();
new_header.lsf = 1;
if(rlc_am_end_aligned(old_header.fi))
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment is end aligned
} else if(retx_queue.front().so_end == retx.so_end) {
retx_queue.pop_front();
} else {
retx_queue.front().is_segment = true;
retx_queue.front().so_start = retx.so_end;
if(new_header.N_li > 0)
new_header.N_li--;
}
// Write header and pdu
uint8_t *ptr = payload;
rlc_am_write_data_pdu_header(&new_header, &ptr);
uint8_t* data = &tx_window[retx.sn].buf->msg[retx.so_start];
uint32_t len = retx.so_end - retx.so_start;
memcpy(ptr, data, len);
log->info("%s Retx PDU segment scheduled for tx. SN: %d, SO: %d\n",
rb_id_text[lcid], retx.sn, retx.so_start);
debug_state();
int pdu_len = (ptr-payload) + len;
if(pdu_len > nof_bytes) {
log->error("%s Retx PDU segment length error. Available: %d, Used: %d\n",
rb_id_text[lcid], nof_bytes, pdu_len);
log->debug("%s Retx PDU segment length error. Header len: %d, Payload len: %d, N_li: %d\n",
rb_id_text[lcid], (ptr-payload), len, new_header.N_li);
}
return pdu_len;
}
int rlc_am::build_data_pdu(uint8_t *payload, uint32_t nof_bytes)
{
if(!tx_sdu && tx_sdu_queue.size() == 0)
{
log->info("No data available to be sent\n");
return 0;
}
byte_buffer_t *pdu = pool->allocate();
if (!pdu) {
log->console("Fatal Error: Could not allocate PDU in build_data_pdu()\n");
exit(-1);
}
rlc_amd_pdu_header_t header;
header.dc = RLC_DC_FIELD_DATA_PDU;
header.rf = 0;
header.p = 0;
header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED;
header.sn = vt_s;
header.lsf = 0;
header.so = 0;
header.N_li = 0;
uint32_t head_len = rlc_am_packed_length(&header);
uint32_t to_move = 0;
uint32_t last_li = 0;
uint32_t pdu_space = nof_bytes;
uint8_t *pdu_ptr = pdu->msg;
if(pdu_space <= head_len)
{
log->warning("%s Cannot build a PDU - %d bytes available, %d bytes required for header\n",
rb_id_text[lcid], nof_bytes, head_len);
pool->deallocate(pdu);
return 0;
}
log->debug("%s Building PDU - pdu_space: %d, head_len: %d \n",
rb_id_text[lcid], pdu_space, head_len);
// Check for SDU segment
if(tx_sdu)
{
to_move = ((pdu_space-head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space-head_len;
memcpy(pdu_ptr, tx_sdu->msg, to_move);
last_li = to_move;
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if(tx_sdu->N_bytes == 0)
{
log->info("%s Complete SDU scheduled for tx. Stack latency: %ld us\n",
rb_id_text[lcid], tx_sdu->get_latency_us());
pool->deallocate(tx_sdu);
tx_sdu = NULL;
}
if(pdu_space > to_move)
pdu_space -= to_move;
else
pdu_space = 0;
header.fi |= RLC_FI_FIELD_NOT_START_ALIGNED; // First byte does not correspond to first byte of SDU
log->debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d \n",
rb_id_text[lcid], to_move, pdu_space, head_len);
}
// Pull SDUs from queue
while(pdu_space > head_len && tx_sdu_queue.size() > 0)
{
if(last_li > 0)
header.li[header.N_li++] = last_li;
head_len = rlc_am_packed_length(&header);
if(head_len >= pdu_space) {
header.N_li--;
break;
}
tx_sdu_queue.read(&tx_sdu);
to_move = ((pdu_space-head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space-head_len;
memcpy(pdu_ptr, tx_sdu->msg, to_move);
last_li = to_move;
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if(tx_sdu->N_bytes == 0)
{
log->info("%s Complete SDU scheduled for tx. Stack latency: %ld us\n",
rb_id_text[lcid], tx_sdu->get_latency_us());
pool->deallocate(tx_sdu);
tx_sdu = NULL;
}
if(pdu_space > to_move)
pdu_space -= to_move;
else
pdu_space = 0;
log->debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d \n",
rb_id_text[lcid], to_move, pdu_space, head_len);
}
if(tx_sdu)
header.fi |= RLC_FI_FIELD_NOT_END_ALIGNED; // Last byte does not correspond to last byte of SDU
// Set Poll bit
pdu_without_poll++;
byte_without_poll += (pdu->N_bytes + head_len);
if(poll_required())
{
header.p = 1;
poll_sn = vt_s;
pdu_without_poll = 0;
byte_without_poll = 0;
poll_retx_timeout.start(t_poll_retx);
}
// Set SN
header.sn = vt_s;
vt_s = (vt_s + 1)%MOD;
log->info("%s PDU scheduled for tx. SN: %d\n", rb_id_text[lcid], header.sn);
// Place PDU in tx_window, write header and TX
tx_window[header.sn].buf = pdu;
tx_window[header.sn].header = header;
tx_window[header.sn].is_acked = false;
tx_window[header.sn].retx_count = 0;
uint8_t *ptr = payload;
rlc_am_write_data_pdu_header(&header, &ptr);
memcpy(ptr, pdu->msg, pdu->N_bytes);
debug_state();
return (ptr-payload) + pdu->N_bytes;
}
void rlc_am::handle_data_pdu(uint8_t *payload, uint32_t nof_bytes, rlc_amd_pdu_header_t header)
{
std::map<uint32_t, rlc_amd_rx_pdu_t>::iterator it;
log->info_hex(payload, nof_bytes, "%s Rx data PDU SN: %d",
rb_id_text[lcid], header.sn);
if(!inside_rx_window(header.sn)) {
if(header.p) {
log->info("%s Status packet requested through polling bit\n", rb_id_text[lcid]);
do_status = true;
}
log->info("%s SN: %d outside rx window [%d:%d] - discarding\n",
rb_id_text[lcid], header.sn, vr_r, vr_mr);
return;
}
it = rx_window.find(header.sn);
if(rx_window.end() != it) {
if(header.p) {
log->info("%s Status packet requested through polling bit\n", rb_id_text[lcid]);
do_status = true;
}
log->info("%s Discarding duplicate SN: %d\n",
rb_id_text[lcid], header.sn);
return;
}
// Write to rx window
rlc_amd_rx_pdu_t pdu;
pdu.buf = pool->allocate();
if (!pdu.buf) {
log->console("Fatal Error: Could not allocate PDU in handle_data_pdu()\n");
exit(-1);
}
memcpy(pdu.buf->msg, payload, nof_bytes);
pdu.buf->N_bytes = nof_bytes;
pdu.header = header;
rx_window[header.sn] = pdu;
// Update vr_h
if(RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h))
vr_h = (header.sn + 1)%MOD;
// Update vr_ms
it = rx_window.find(vr_ms);
while(rx_window.end() != it)
{
vr_ms = (vr_ms + 1)%MOD;
it = rx_window.find(vr_ms);
}
// Check poll bit
if(header.p)
{
log->info("%s Status packet requested through polling bit\n", rb_id_text[lcid]);
poll_received = true;
// 36.322 v10 Section 5.2.3
if(RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) ||
RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr))
{
do_status = true;
}
// else delay for reordering timer
}
// Reassemble and deliver SDUs
reassemble_rx_sdus();
// Update reordering variables and timers (36.322 v10.0.0 Section 5.1.3.2.3)
if(reordering_timeout.is_running())
{
if(
vr_x == vr_r ||
(RX_MOD_BASE(vr_x) < RX_MOD_BASE(vr_r) ||
RX_MOD_BASE(vr_x) > RX_MOD_BASE(vr_mr) &&
vr_x != vr_mr)
)
{
reordering_timeout.reset();
}
}
if(!reordering_timeout.is_running())
{
if(RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_r))
{
reordering_timeout.start(t_reordering);
vr_x = vr_h;
}
}
debug_state();
}
void rlc_am::handle_data_pdu_segment(uint8_t *payload, uint32_t nof_bytes, rlc_amd_pdu_header_t header)
{
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
log->info_hex(payload, nof_bytes, "%s Rx data PDU segment. SN: %d, SO: %d",
rb_id_text[lcid], header.sn, header.so);
// Check inside rx window
if(!inside_rx_window(header.sn)) {
if(header.p) {
log->info("%s Status packet requested through polling bit\n", rb_id_text[lcid]);
do_status = true;
}
log->info("%s SN: %d outside rx window [%d:%d] - discarding\n",
rb_id_text[lcid], header.sn, vr_r, vr_mr);
return;
}
rlc_amd_rx_pdu_t segment;
segment.buf = pool->allocate();
if (!segment.buf) {
log->console("Fatal Error: Could not allocate PDU in handle_data_pdu_segment()\n");
exit(-1);
}
memcpy(segment.buf->msg, payload, nof_bytes);
segment.buf->N_bytes = nof_bytes;
segment.header = header;
// Check if we already have a segment from the same PDU
it = rx_segments.find(header.sn);
if(rx_segments.end() != it) {
if(header.p) {
log->info("%s Status packet requested through polling bit\n", rb_id_text[lcid]);
do_status = true;
}
// Add segment to PDU list and check for complete
if(add_segment_and_check(&it->second, &segment)) {
std::list<rlc_amd_rx_pdu_t>::iterator segit;
std::list<rlc_amd_rx_pdu_t> seglist = it->second.segments;
for(segit = seglist.begin(); segit != seglist.end(); segit++) {
pool->deallocate(segit->buf);
}
seglist.clear();
rx_segments.erase(it);
}
} else {
// Create new PDU segment list and write to rx_segments
rlc_amd_rx_pdu_segments_t pdu;
pdu.segments.push_back(segment);
rx_segments[header.sn] = pdu;
// Update vr_h
if(RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h))
vr_h = (header.sn + 1)%MOD;
// Check poll bit
if(header.p)
{
log->info("%s Status packet requested through polling bit\n", rb_id_text[lcid]);
poll_received = true;
// 36.322 v10 Section 5.2.3
if(RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) ||
RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr))
{
do_status = true;
}
// else delay for reordering timer
}
}
debug_state();
}
void rlc_am::handle_control_pdu(uint8_t *payload, uint32_t nof_bytes)
{
log->info_hex(payload, nof_bytes, "%s Rx control PDU", rb_id_text[lcid]);
rlc_status_pdu_t status;
rlc_am_read_status_pdu(payload, nof_bytes, &status);
log->info("%s Rx Status PDU: %s\n", rb_id_text[lcid], rlc_am_to_string(&status).c_str());
poll_retx_timeout.reset();
// Handle ACKs and NACKs
bool update_vt_a = true;
uint32_t i = vt_a;
while(TX_MOD_BASE(i) < TX_MOD_BASE(status.ack_sn) &&
TX_MOD_BASE(i) < TX_MOD_BASE(vt_s))
{
std::map<uint32_t, rlc_amd_tx_pdu_t>::iterator it;
bool nack = false;
for(int j=0;j<status.N_nack;j++) {
if(status.nacks[j].nack_sn == i) {
nack = true;
update_vt_a = false;
if(tx_window.end() != tx_window.find(i))
{
if(!retx_queue_has_sn(i)) {
rlc_amd_retx_t retx;
retx.is_segment = status.nacks[j].has_so;
if(retx.is_segment) {
retx.so_start = status.nacks[j].so_start;
if(status.nacks[j].so_end == 0x7FFF) {
retx.so_end = tx_window.find(i)->second.buf->N_bytes;
}else{
retx.so_end = status.nacks[j].so_end + 1;
}
} else {
retx.so_start = 0;
retx.so_end = tx_window.find(i)->second.buf->N_bytes;
}
retx.sn = i;
retx_queue.push_back(retx);
}
}
}
}
if(!nack) {
//ACKed SNs get marked and removed from tx_window if possible
it = tx_window.find(i);
if(tx_window.end() != it)
{
tx_window[i].is_acked = true;
if(update_vt_a)
{
pool->deallocate(tx_window[i].buf);
tx_window.erase(i);
vt_a = (vt_a + 1)%MOD;
vt_ms = (vt_ms + 1)%MOD;
}
}
}
i = (i+1)%MOD;
}
debug_state();
}
void rlc_am::reassemble_rx_sdus()
{
if(!rx_sdu) {
rx_sdu = pool->allocate();
if (!rx_sdu) {
log->console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)\n");
exit(-1);
}
}
// Iterate through rx_window, assembling and delivering SDUs
while(rx_window.end() != rx_window.find(vr_r))
{
// Handle any SDU segments
for(int i=0; i<rx_window[vr_r].header.N_li; i++)
{
int len = rx_window[vr_r].header.li[i];
memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len);
rx_sdu->N_bytes += len;
rx_window[vr_r].buf->msg += len;
rx_window[vr_r].buf->N_bytes -= len;
log->info_hex(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU", rb_id_text[lcid]);
rx_sdu->set_timestamp();
pdcp->write_pdu(lcid, rx_sdu);
rx_sdu = pool->allocate();
if (!rx_sdu) {
log->console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)\n");
exit(-1);
}
}
// Handle last segment
memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, rx_window[vr_r].buf->N_bytes);
rx_sdu->N_bytes += rx_window[vr_r].buf->N_bytes;
if(rlc_am_end_aligned(rx_window[vr_r].header.fi))
{
log->info_hex(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU", rb_id_text[lcid]);
rx_sdu->set_timestamp();
pdcp->write_pdu(lcid, rx_sdu);
rx_sdu = pool->allocate();
if (!rx_sdu) {
log->console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)\n");
exit(-1);
}
}
// Move the rx_window
pool->deallocate(rx_window[vr_r].buf);
rx_window.erase(vr_r);
vr_r = (vr_r + 1)%MOD;
vr_mr = (vr_mr + 1)%MOD;
}
}
bool rlc_am::inside_tx_window(uint16_t sn)
{
if(RX_MOD_BASE(sn) >= RX_MOD_BASE(vt_a) &&
RX_MOD_BASE(sn) < RX_MOD_BASE(vt_ms))
{
return true;
}else{
return false;
}
}
bool rlc_am::inside_rx_window(uint16_t sn)
{
if(RX_MOD_BASE(sn) >= RX_MOD_BASE(vr_r) &&
RX_MOD_BASE(sn) < RX_MOD_BASE(vr_mr))
{
return true;
}else{
return false;
}
}
void rlc_am::debug_state()
{
log->debug("%s vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d "
"vr_r = %d, vr_mr = %d, vr_x = %d, vr_ms = %d, vr_h = %d\n",
rb_id_text[lcid], vt_a, vt_ms, vt_s, poll_sn,
vr_r, vr_mr, vr_x, vr_ms, vr_h);
}
bool rlc_am::add_segment_and_check(rlc_amd_rx_pdu_segments_t *pdu, rlc_amd_rx_pdu_t *segment)
{
// Ordered insert
std::list<rlc_amd_rx_pdu_t>::iterator tmpit;
std::list<rlc_amd_rx_pdu_t>::iterator it = pdu->segments.begin();
while(it != pdu->segments.end() && it->header.so < segment->header.so)
it++;
pdu->segments.insert(it, *segment);
// Check for complete
uint32_t so = 0;
for(it = pdu->segments.begin(); it != pdu->segments.end(); it++) {
if(so != it->header.so)
return false;
so += it->buf->N_bytes;
}
if(!pdu->segments.back().header.lsf)
return false;
// We have all segments of the PDU - reconstruct and handle
rlc_amd_pdu_header_t header;
header.dc = RLC_DC_FIELD_DATA_PDU;
header.rf = 0;
header.p = 0;
header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED;
header.sn = pdu->segments.front().header.sn;
header.lsf = 0;
header.so = 0;
header.N_li = 0;
// Reconstruct fi field
header.fi |= (pdu->segments.front().header.fi & RLC_FI_FIELD_NOT_START_ALIGNED);
header.fi |= (pdu->segments.back().header.fi & RLC_FI_FIELD_NOT_END_ALIGNED);
// Reconstruct li fields
uint16_t count = 0;
uint16_t carryover = 0;
for(it = pdu->segments.begin(); it != pdu->segments.end(); it++) {
if(it->header.N_li > 0) {
header.li[header.N_li++] = it->header.li[0] + carryover;
count += it->header.li[0];
for(int i=1; i<it->header.N_li; i++) {
header.li[header.N_li++] = it->header.li[i];
count += it->header.li[i];
}
}
carryover = it->buf->N_bytes - count;
tmpit = it;
if(rlc_am_end_aligned(it->header.fi) && ++tmpit != pdu->segments.end()) {
header.li[header.N_li++] = carryover;
carryover = 0;
}
count = 0;
}
// Copy data
byte_buffer_t *full_pdu = pool->allocate();
if (!full_pdu) {
log->console("Fatal Error: Could not allocate PDU in add_segment_and_check()\n");
exit(-1);
}
for(it = pdu->segments.begin(); it != pdu->segments.end(); it++) {
memcpy(&full_pdu->msg[full_pdu->N_bytes], it->buf->msg, it->buf->N_bytes);
full_pdu->N_bytes += it->buf->N_bytes;
}
handle_data_pdu(full_pdu->msg, full_pdu->N_bytes, header);
return true;
}
int rlc_am::required_buffer_size(rlc_amd_retx_t retx)
{
if(!retx.is_segment){
return rlc_am_packed_length(&tx_window[retx.sn].header) + tx_window[retx.sn].buf->N_bytes;
}
// Construct new header
rlc_amd_pdu_header_t new_header;
rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header;
new_header.dc = RLC_DC_FIELD_DATA_PDU;
new_header.rf = 1;
new_header.p = 0;
new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED;
new_header.sn = old_header.sn;
new_header.lsf = 0;
new_header.so = retx.so_start;
new_header.N_li = 0;
uint32_t head_len = 0;
// Need to rebuild the li table & update fi based on so_start and so_end
if(retx.so_start != 0 && rlc_am_start_aligned(old_header.fi))
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned
uint32_t lower = 0;
uint32_t upper = 0;
uint32_t li = 0;
for(int i=0; i<old_header.N_li; i++) {
if(lower >= retx.so_end)
break;
upper += old_header.li[i];
head_len = rlc_am_packed_length(&new_header);
if(upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed
li = upper - lower;
if(upper > retx.so_end)
li -= upper - retx.so_end;
if(lower < retx.so_start)
li -= retx.so_start - lower;
if(lower > 0 && lower == retx.so_start)
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU
if(upper == retx.so_end) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
new_header.li[new_header.N_li++] = li;
}
lower += old_header.li[i];
}
// if(tx_window[retx.sn].buf->N_bytes != retx.so_end) {
// if(new_header.N_li > 0)
// new_header.N_li--; // No li for last segment
// }
return rlc_am_packed_length(&new_header) + (retx.so_end-retx.so_start);
}
bool rlc_am::retx_queue_has_sn(uint32_t sn)
{
std::deque<rlc_amd_retx_t>::iterator q_it;
for(q_it = retx_queue.begin(); q_it != retx_queue.end(); q_it++) {
if(q_it->sn == sn)
return true;
}
return false;
}
/****************************************************************************
* Header pack/unpack helper functions
* Ref: 3GPP TS 36.322 v10.0.0 Section 6.2.1
***************************************************************************/
// Read header from pdu struct, don't strip header
void rlc_am_read_data_pdu_header(byte_buffer_t *pdu, rlc_amd_pdu_header_t *header)
{
uint8_t *ptr = pdu->msg;
uint32_t n = 0;
rlc_am_read_data_pdu_header(&ptr, &n, header);
}
// Read header from raw pointer, strip header
void rlc_am_read_data_pdu_header(uint8_t **payload, uint32_t *nof_bytes, rlc_amd_pdu_header_t *header)
{
uint8_t ext;
uint8_t *ptr = *payload;
header->dc = (rlc_dc_field_t)((*ptr >> 7) & 0x01);
if(RLC_DC_FIELD_DATA_PDU == header->dc)
{
// Fixed part
header->rf = ((*ptr >> 6) & 0x01);
header->p = ((*ptr >> 5) & 0x01);
header->fi = (rlc_fi_field_t)((*ptr >> 3) & 0x03);
ext = ((*ptr >> 2) & 0x01);
header->sn = (*ptr & 0x03) << 8; // 2 bits SN
ptr++;
header->sn |= (*ptr & 0xFF); // 8 bits SN
ptr++;
if(header->rf)
{
header->lsf = ((*ptr >> 7) & 0x01);
header->so = (*ptr & 0x7F) << 8; // 7 bits of SO
ptr++;
header->so |= (*ptr & 0xFF); // 8 bits of SO
ptr++;
}
// Extension part
header->N_li = 0;
while(ext)
{
if(header->N_li%2 == 0)
{
ext = ((*ptr >> 7) & 0x01);
header->li[header->N_li] = (*ptr & 0x7F) << 4; // 7 bits of LI
ptr++;
header->li[header->N_li] |= (*ptr & 0xF0) >> 4; // 4 bits of LI
header->N_li++;
}
else
{
ext = (*ptr >> 3) & 0x01;
header->li[header->N_li] = (*ptr & 0x07) << 8; // 3 bits of LI
ptr++;
header->li[header->N_li] |= (*ptr & 0xFF); // 8 bits of LI
header->N_li++;
ptr++;
}
}
// Account for padding if N_li is odd
if(header->N_li%2 == 1)
ptr++;
*nof_bytes -= ptr-*payload;
*payload = ptr;
}
}
// Write header to pdu struct
void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t *header, byte_buffer_t *pdu)
{
uint8_t *ptr = pdu->msg;
rlc_am_write_data_pdu_header(header, &ptr);
pdu->N_bytes += ptr - pdu->msg;
}
// Write header to pointer & move pointer
void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t *header, uint8_t **payload)
{
uint32_t i;
uint8_t ext = (header->N_li > 0) ? 1 : 0;
uint8_t *ptr = *payload;
// Fixed part
*ptr = (header->dc & 0x01) << 7;
*ptr |= (header->rf & 0x01) << 6;
*ptr |= (header->p & 0x01) << 5;
*ptr |= (header->fi & 0x03) << 3;
*ptr |= (ext & 0x01) << 2;
*ptr |= (header->sn & 0x300) >> 8; // 2 bits SN
ptr++;
*ptr = (header->sn & 0xFF); // 8 bits SN
ptr++;
// Segment part
if(header->rf)
{
*ptr = (header->lsf & 0x01) << 7;
*ptr |= (header->so & 0x7F00) >> 8; // 7 bits of SO
ptr++;
*ptr = (header->so & 0x00FF); // 8 bits of SO
ptr++;
}
// Extension part
i = 0;
while(i < header->N_li)
{
ext = ((i+1) == header->N_li) ? 0 : 1;
*ptr = (ext & 0x01) << 7; // 1 bit header
*ptr |= (header->li[i] & 0x7F0) >> 4; // 7 bits of LI
ptr++;
*ptr = (header->li[i] & 0x00F) << 4; // 4 bits of LI
i++;
if(i < header->N_li)
{
ext = ((i+1) == header->N_li) ? 0 : 1;
*ptr |= (ext & 0x01) << 3; // 1 bit header
*ptr |= (header->li[i] & 0x700) >> 8; // 3 bits of LI
ptr++;
*ptr = (header->li[i] & 0x0FF); // 8 bits of LI
ptr++;
i++;
}
}
// Pad if N_li is odd
if(header->N_li%2 == 1)
ptr++;
*payload = ptr;
}
void rlc_am_read_status_pdu(byte_buffer_t *pdu, rlc_status_pdu_t *status)
{
rlc_am_read_status_pdu(pdu->msg, pdu->N_bytes, status);
}
void rlc_am_read_status_pdu(uint8_t *payload, uint32_t nof_bytes, rlc_status_pdu_t *status)
{
uint32_t i;
uint8_t ext1, ext2;
bit_buffer_t tmp;
uint8_t *ptr = tmp.msg;
srslte_bit_unpack_vector(payload, tmp.msg, nof_bytes*8);
tmp.N_bits = nof_bytes*8;
rlc_dc_field_t dc = (rlc_dc_field_t)srslte_bit_pack(&ptr, 1);
if(RLC_DC_FIELD_CONTROL_PDU == dc)
{
uint8_t cpt = srslte_bit_pack(&ptr, 3); // 3-bit Control PDU Type (0 == status)
if(0 == cpt)
{
status->ack_sn = srslte_bit_pack(&ptr, 10); // 10 bits ACK_SN
ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1
status->N_nack = 0;
while(ext1)
{
status->nacks[status->N_nack].nack_sn = srslte_bit_pack(&ptr, 10);
ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1
ext2 = srslte_bit_pack(&ptr, 1); // 1 bits E2
if(ext2)
{
status->nacks[status->N_nack].has_so = true;
status->nacks[status->N_nack].so_start = srslte_bit_pack(&ptr, 15);
status->nacks[status->N_nack].so_end = srslte_bit_pack(&ptr, 15);
}
status->N_nack++;
}
}
}
}
void rlc_am_write_status_pdu(rlc_status_pdu_t *status, byte_buffer_t *pdu )
{
pdu->N_bytes = rlc_am_write_status_pdu(status, pdu->msg);
}
int rlc_am_write_status_pdu(rlc_status_pdu_t *status, uint8_t *payload)
{
uint32_t i;
uint8_t ext1;
bit_buffer_t tmp;
uint8_t *ptr = tmp.msg;
srslte_bit_unpack(RLC_DC_FIELD_CONTROL_PDU, &ptr, 1); // D/C
srslte_bit_unpack(0, &ptr, 3); // CPT (0 == STATUS)
srslte_bit_unpack(status->ack_sn, &ptr, 10); // 10 bit ACK_SN
ext1 = (status->N_nack == 0) ? 0 : 1;
srslte_bit_unpack(ext1, &ptr, 1); // E1
for(i=0;i<status->N_nack;i++)
{
srslte_bit_unpack(status->nacks[i].nack_sn, &ptr, 10); // 10 bit NACK_SN
ext1 = ((status->N_nack-1) == i) ? 0 : 1;
srslte_bit_unpack(ext1, &ptr, 1); // E1
if(status->nacks[i].has_so) {
srslte_bit_unpack(1 , &ptr, 1); // E2
srslte_bit_unpack(status->nacks[i].so_start , &ptr, 15);
srslte_bit_unpack(status->nacks[i].so_end , &ptr, 15);
}else{
srslte_bit_unpack(0 , &ptr, 1); // E2
}
}
// Pad
tmp.N_bits = ptr - tmp.msg;
uint8_t n_pad = 8 - (tmp.N_bits%8);
srslte_bit_unpack(0, &ptr, n_pad);
tmp.N_bits = ptr - tmp.msg;
// Pack bits
srslte_bit_pack_vector(tmp.msg, payload, tmp.N_bits);
return tmp.N_bits/8;
}
uint32_t rlc_am_packed_length(rlc_amd_pdu_header_t *header)
{
uint32_t len = 2; // Fixed part is 2 bytes
if(header->rf) len += 2; // Segment header is 2 bytes
len += header->N_li * 1.5 + 0.5; // Extension part - integer rounding up
return len;
}
uint32_t rlc_am_packed_length(rlc_status_pdu_t *status)
{
uint32_t i;
uint32_t len_bits = 15; // Fixed part is 15 bits
for(i=0;i<status->N_nack;i++)
{
if(status->nacks[i].has_so) {
len_bits += 42; // 10 bits SN, 2 bits ext, 15 bits so_start, 15 bits so_end
}else{
len_bits += 12; // 10 bits SN, 2 bits ext
}
}
return (len_bits+7)/8; // Convert to bytes - integer rounding up
}
bool rlc_am_is_control_pdu(byte_buffer_t *pdu)
{
return rlc_am_is_control_pdu(pdu->msg);
}
bool rlc_am_is_control_pdu(uint8_t *payload)
{
return ((*(payload) >> 7) & 0x01) == RLC_DC_FIELD_CONTROL_PDU;
}
bool rlc_am_is_pdu_segment(uint8_t *payload)
{
return ((*(payload) >> 6) & 0x01) == 1;
}
std::string rlc_am_to_string(rlc_status_pdu_t *status)
{
std::stringstream ss;
ss << "ACK_SN = " << status->ack_sn;
ss << ", N_nack = " << status->N_nack;
if(status->N_nack > 0)
{
ss << ", NACK_SN = ";
for(int i=0; i<status->N_nack; i++)
{
if(status->nacks[i].has_so) {
ss << "[" << status->nacks[i].nack_sn << " " << status->nacks[i].so_start \
<< ":" << status->nacks[i].so_end << "]";
}else{
ss << "[" << status->nacks[i].nack_sn << "]";
}
}
}
return ss.str();
}
bool rlc_am_start_aligned(uint8_t fi)
{
return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_END_ALIGNED);
}
bool rlc_am_end_aligned(uint8_t fi)
{
return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_START_ALIGNED);
}
} // namespace srsue