You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

333 lines
12 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/common/buffer_pool.h"
#include "srslte/common/log_filter.h"
#include "srslte/common/security.h"
#include "srslte/upper/pdcp_entity_nr.h"
#include <iostream>
#define TESTASSERT(cond) \
{ \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return -1; \
} \
}
// Encription and Integrity Keys
uint8_t k_int[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
uint8_t k_enc[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
// Test SDUs for tx
uint8_t sdu1[] = {0x18, 0xE2};
uint32_t SDU1_LEN = 2;
// Test PDUs for rx
uint8_t pdu1[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint32_t PDU1_LEN = 8;
uint8_t pdu2[] = {0x88, 0x00, 0x8d, 0x2c, 0x47, 0x5e, 0xb1, 0x5b};
uint32_t PDU2_LEN = 8;
uint8_t pdu3[] = {0x80, 0x00, 0x97, 0xbe, 0xa3, 0x32, 0xfa, 0x61};
uint32_t PDU3_LEN = 8;
uint8_t pdu4[] = {0x80, 0x00, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint32_t PDU4_LEN = 9;
uint8_t pdu5[] = {0x82, 0x00, 0x00, 0x15, 0x01, 0xf4, 0xb0, 0xfc, 0xc5};
uint32_t PDU5_LEN = 9;
uint8_t pdu6[] = {0x80, 0x00, 0x00, 0xc2, 0x47, 0xa8, 0xdd, 0xc0, 0x73};
uint32_t PDU6_LEN = 9;
// dummy classes
class rlc_dummy : public srsue::rlc_interface_pdcp
{
public:
rlc_dummy(srslte::log* log_) : log(log_) {}
void get_last_sdu(const srslte::unique_byte_buffer_t& pdu)
{
memcpy(pdu->msg, last_pdcp_pdu->msg, last_pdcp_pdu->N_bytes);
pdu->N_bytes = last_pdcp_pdu->N_bytes;
return;
}
void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking = true)
{
log->info_hex(sdu->msg, sdu->N_bytes, "RLC SDU");
last_pdcp_pdu.swap(sdu);
}
private:
srslte::log* log;
srslte::unique_byte_buffer_t last_pdcp_pdu;
bool rb_is_um(uint32_t lcid) { return false; }
};
class rrc_dummy : public srsue::rrc_interface_pdcp
{
public:
rrc_dummy(srslte::log* log_) : log(log_) {}
void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {}
void write_pdu_bcch_bch(srslte::unique_byte_buffer_t pdu) {}
void write_pdu_bcch_dlsch(srslte::unique_byte_buffer_t pdu) {}
void write_pdu_pcch(srslte::unique_byte_buffer_t pdu) {}
void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {}
std::string get_rb_name(uint32_t lcid) { return "None"; }
private:
srslte::log* log;
};
class gw_dummy : public srsue::gw_interface_pdcp
{
public:
gw_dummy(srslte::log* log_) : log(log_) {}
void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {}
uint32_t rx_count = 0;
void get_last_pdu(const srslte::unique_byte_buffer_t& pdu)
{
memcpy(pdu->msg, last_pdu->msg, last_pdu->N_bytes);
pdu->N_bytes = last_pdu->N_bytes;
return;
}
void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu)
{
log->info_hex(pdu->msg, pdu->N_bytes, "GW PDU");
rx_count++;
last_pdu.swap(pdu);
}
private:
srslte::log* log;
srslte::unique_byte_buffer_t last_pdu;
};
/*
* Genric function to test transmission of in-sequence packets
*/
int test_tx(uint32_t n_packets, uint8_t pdcp_sn_len, srslte::unique_byte_buffer_t pdu_exp, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_entity_nr pdcp;
srslte::srslte_pdcp_config_t cfg = {1, srslte::PDCP_RB_IS_DRB, SECURITY_DIRECTION_UPLINK, SECURITY_DIRECTION_DOWNLINK, pdcp_sn_len};
rlc_dummy rlc(log);
rrc_dummy rrc(log);
gw_dummy gw(log);
pdcp.init(&rlc, &rrc, &gw, log, 0, cfg);
pdcp.config_security(k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2);
pdcp.enable_integrity();
pdcp.enable_encryption();
// Test SDU
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
memcpy(sdu->msg, sdu1, SDU1_LEN);
sdu->N_bytes = SDU1_LEN;
// Run test
for (uint32_t i = 0; i < n_packets; ++i) {
// Test SDU
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
memcpy(sdu->msg, sdu1, SDU1_LEN);
sdu->N_bytes = SDU1_LEN;
pdcp.write_sdu(std::move(sdu), true);
}
srslte::unique_byte_buffer_t pdu_act = allocate_unique_buffer(*pool);
rlc.get_last_sdu(pdu_act);
TESTASSERT(pdu_act->N_bytes == pdu_exp->N_bytes);
for (uint32_t i = 0; i < pdu_exp->N_bytes; ++i) {
TESTASSERT(pdu_act->msg[i] == pdu_exp->msg[i]);
}
return 0;
}
/*
* TX Test: PDCP Entity with SN LEN = 12 and 18. Tested COUNT = 0, 2048 and 4096
* PDCP entity configured with EIA2 and EEA2
*/
int test_tx_all(srslte::byte_buffer_pool* pool, srslte::log* log)
{
/*
* TX Test 1: PDCP Entity with SN LEN = 12
* PDCP entity configured with EIA2 and EEA2
* TX_NEXT = 0.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92}
*/
srslte::unique_byte_buffer_t pdu_exp_sn0_len12 = allocate_unique_buffer(*pool);
memcpy(pdu_exp_sn0_len12->msg, pdu1, PDU1_LEN);
pdu_exp_sn0_len12->N_bytes = PDU1_LEN;
//TESTASSERT(test_tx(1, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn0_len12), pool, log) == 0);
/*
* TX Test 2: PDCP Entity with SN LEN = 12
* PDCP entity configured with EIA2 and EEA2
* TX_NEXT = 2048.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x88, 0x00}, Ciphered Text {0x8d, 0x2c}, MAC-I {0x47, 0x5e, 0xb1, 0x5b}
*/
srslte::unique_byte_buffer_t pdu_exp_sn2048_len12 = allocate_unique_buffer(*pool);
memcpy(pdu_exp_sn2048_len12->msg, pdu2, PDU2_LEN);
pdu_exp_sn2048_len12->N_bytes = PDU2_LEN;
//TESTASSERT(test_tx(2049, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn2048_len12), pool, log) == 0);
/*
* TX Test 3: PDCP Entity with SN LEN = 12
* PDCP entity configured with EIA2 and EEA2
* TX_NEXT = 4096.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80,0x00}, Ciphered Text {0x97, 0xbe}, MAC-I {0xa3, 0x32, 0xfa, 0x61}
*/
srslte::unique_byte_buffer_t pdu_exp_sn4096_len12 = allocate_unique_buffer(*pool);
memcpy(pdu_exp_sn4096_len12->msg, pdu3, PDU3_LEN);
pdu_exp_sn4096_len12->N_bytes = PDU3_LEN;
//TESTASSERT(test_tx(4097, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn4096_len12), pool, log) == 0);
/*
* TX Test 4: PDCP Entity with SN LEN = 18
* PDCP entity configured with EIA2 and EEA2
* TX_NEXT = 0.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80, 0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92}
*/
srslte::unique_byte_buffer_t pdu_exp_sn0_len18 = allocate_unique_buffer(*pool);
memcpy(pdu_exp_sn0_len18->msg, pdu4, PDU4_LEN);
pdu_exp_sn0_len18->N_bytes = PDU4_LEN;
TESTASSERT(test_tx(1, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn0_len18), pool, log) == 0);
/*
* TX Test 5: PDCP Entity with SN LEN = 18
* PDCP entity configured with EIA2 and EEA2
* TX_NEXT = 131072.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x82, 0x00, 0x00}, Ciphered Text {0x15, 0x01}, MAC-I {0xf4, 0xb0, 0xfc, 0xc5}
*/
srslte::unique_byte_buffer_t pdu_exp_sn131072_len18 = allocate_unique_buffer(*pool);
memcpy(pdu_exp_sn131072_len18->msg, pdu5, PDU5_LEN);
pdu_exp_sn131072_len18->N_bytes = PDU5_LEN;
TESTASSERT(test_tx(131073, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn131072_len18), pool, log) == 0);
/*
* TX Test 6: PDCP Entity with SN LEN = 18
* PDCP entity configured with EIA2 and EEA2
* TX_NEXT = 262144.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80, 0x00, 0x00}, Ciphered Text {0xc2, 0x47}, MAC-I {0xa8, 0xdd, 0xc0, 0x73}
*/
srslte::unique_byte_buffer_t pdu_exp_sn262144_len18 = allocate_unique_buffer(*pool);
memcpy(pdu_exp_sn262144_len18->msg, pdu6, PDU6_LEN);
pdu_exp_sn262144_len18->N_bytes = PDU6_LEN;
TESTASSERT(test_tx(262145, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn262144_len18), pool, log) == 0);
return 0;
}
/*
* RX Test: PDCP Entity with SN LEN = 12 and 18. Tested 4097 packets received without losses.
* PDCP entity configured with EIA2 and EEA2
*/
int test_rx_in_sequence(uint32_t n_packets, uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_entity_nr pdcp_tx;
srslte::pdcp_entity_nr pdcp_rx;
srslte::srslte_pdcp_config_t cfg_tx = {
1, srslte::PDCP_RB_IS_DRB, SECURITY_DIRECTION_UPLINK, SECURITY_DIRECTION_DOWNLINK, pdcp_sn_len};
srslte::srslte_pdcp_config_t cfg_rx = {
1, srslte::PDCP_RB_IS_DRB, SECURITY_DIRECTION_DOWNLINK, SECURITY_DIRECTION_UPLINK, pdcp_sn_len};
rlc_dummy rlc_tx(log);
rrc_dummy rrc_tx(log);
gw_dummy gw_tx(log);
rlc_dummy rlc_rx(log);
rrc_dummy rrc_rx(log);
gw_dummy gw_rx(log);
pdcp_tx.init(&rlc_tx, &rrc_tx, &gw_tx, log, 0, cfg_tx);
pdcp_tx.config_security(
k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2);
pdcp_tx.enable_integrity();
pdcp_tx.enable_encryption();
pdcp_rx.init(&rlc_rx, &rrc_rx, &gw_rx, log, 0, cfg_rx);
pdcp_rx.config_security(
k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2);
pdcp_rx.enable_integrity();
pdcp_rx.enable_encryption();
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool);
memcpy(sdu_exp->msg, sdu1, SDU1_LEN);
sdu_exp->N_bytes = SDU1_LEN;
// Generate test message and
// decript and check matching SDUs
for (uint32_t i = 0; i < n_packets; ++i) {
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t pdu = allocate_unique_buffer(*pool);
memcpy(sdu->msg, sdu_exp->msg, SDU1_LEN);
sdu->N_bytes = SDU1_LEN;
// Generate encripted and integrity protected PDU
pdcp_tx.write_sdu(std::move(sdu), true);
rlc_tx.get_last_sdu(pdu);
pdcp_rx.write_pdu(std::move(pdu));
gw_rx.get_last_pdu(sdu_act);
TESTASSERT(sdu_exp->N_bytes == sdu_act->N_bytes);
for (uint32_t j = 0; j < sdu_act->N_bytes; ++j) {
TESTASSERT(sdu_exp->msg[j] == sdu_act->msg[j]);
}
}
return 0;
}
// Setup all tests
int run_all_tests(srslte::byte_buffer_pool* pool)
{
// Setup log
srslte::log_filter log("PDCP NR Test");
log.set_level(srslte::LOG_LEVEL_DEBUG);
log.set_hex_limit(128);
TESTASSERT(test_tx_all(pool, &log) == 0);
TESTASSERT(test_rx_in_sequence(4097, srslte::PDCP_SN_LEN_12, pool, &log) == 0);
TESTASSERT(test_rx_in_sequence(262145, srslte::PDCP_SN_LEN_18, pool, &log) == 0);
return 0;
}
int main(int argc, char** argv)
{
run_all_tests(srslte::byte_buffer_pool::get_instance());
srslte::byte_buffer_pool::cleanup();
}