You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsue/test/phy/nr_cell_search_rf.cc

287 lines
10 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include "srsran/common/band_helper.h"
#include "srsran/common/string_helpers.h"
#include "srsran/common/test_common.h"
#include "srsran/interfaces/phy_interface_types.h"
#include "srsran/radio/radio.h"
#include "srsran/srslog/srslog.h"
#include "srsue/hdr/phy/scell/intra_measure_nr.h"
#include <boost/program_options.hpp>
#include <boost/program_options/parsers.hpp>
#include <iostream>
#include <map>
#include <memory>
#include <vector>
struct args_t {
// General
std::string log_level = "warning";
double srate_hz = 23.04e6;
// Measurement parameters
uint32_t meas_len_ms = 20;
uint32_t meas_period_ms = 20;
float thr_snr_db = -5.0f;
// Radio parameters
std::string radio_device_name = "auto";
std::string radio_device_args = "auto";
std::string radio_log_level = "info";
float rx_gain = 80.0f;
double freq_offset_hz = 0;
std::string bands = "78";
};
class meas_itf_listener : public srsue::scell::intra_measure_base::meas_itf
{
public:
typedef struct {
float rsrp_avg;
float rsrp_min;
float rsrp_max;
float rsrq_avg;
float rsrq_min;
float rsrq_max;
uint32_t arfcn;
uint32_t count;
} cell_meas_t;
std::map<uint32_t, cell_meas_t> cells;
void cell_meas_reset(uint32_t cc_idx) override {}
void new_cell_meas(uint32_t cc_idx, const std::vector<srsue::phy_meas_t>& meas) override
{
for (const srsue::phy_meas_t& m : meas) {
uint32_t pci = m.pci;
if (!cells.count(pci)) {
cells[pci].rsrp_min = m.rsrp;
cells[pci].rsrp_max = m.rsrp;
cells[pci].rsrp_avg = m.rsrp;
cells[pci].rsrq_min = m.rsrq;
cells[pci].rsrq_max = m.rsrq;
cells[pci].rsrq_avg = m.rsrq;
cells[pci].count = 1;
} else {
cells[pci].rsrp_min = SRSRAN_MIN(cells[pci].rsrp_min, m.rsrp);
cells[pci].rsrp_max = SRSRAN_MAX(cells[pci].rsrp_max, m.rsrp);
cells[pci].rsrp_avg = (m.rsrp + cells[pci].rsrp_avg * cells[pci].count) / (cells[pci].count + 1);
cells[pci].rsrq_min = SRSRAN_MIN(cells[pci].rsrq_min, m.rsrq);
cells[pci].rsrq_max = SRSRAN_MAX(cells[pci].rsrq_max, m.rsrq);
cells[pci].rsrq_avg = (m.rsrq + cells[pci].rsrq_avg * cells[pci].count) / (cells[pci].count + 1);
cells[pci].count++;
}
cells[pci].arfcn = m.earfcn;
}
}
void print_stats()
{
printf("\n-- Statistics:\n");
for (auto& e : cells) {
printf(" pci=%03d; arfcn=%d; count=%3d; rsrp=%+.1f|%+.1f|%+.1fdBfs; rsrq=%+.1f|%+.1f|%+.1fdB;\n",
e.first,
e.second.arfcn,
e.second.count,
e.second.rsrp_min,
e.second.rsrp_avg,
e.second.rsrp_max,
e.second.rsrq_min,
e.second.rsrq_avg,
e.second.rsrq_max);
}
}
};
// shorten boost program options namespace
namespace bpo = boost::program_options;
int parse_args(int argc, char** argv, args_t& args)
{
int ret = SRSRAN_SUCCESS;
bpo::options_description options("General options");
bpo::options_description measure("Measurement options");
bpo::options_description over_the_air("Mode 1: Over the air options (Default)");
// clang-format off
measure.add_options()
("meas_len_ms", bpo::value<uint32_t>(&args.meas_len_ms)->default_value(args.meas_len_ms), "Measurement length")
("meas_period_ms", bpo::value<uint32_t>(&args.meas_period_ms)->default_value(args.meas_period_ms), "Measurement period")
("thr_snr_db", bpo::value<float>(&args.thr_snr_db)->default_value(args.thr_snr_db), "Detection threshold for SNR in dB")
("bands", bpo::value<std::string>(&args.bands)->default_value(args.bands), "band list to measure, comma separated")
;
over_the_air.add_options()
("rf.device_name", bpo::value<std::string>(&args.radio_device_name)->default_value(args.radio_device_name), "RF Device Name")
("rf.device_args", bpo::value<std::string>(&args.radio_device_args)->default_value(args.radio_device_args), "RF Device arguments")
("rf.log_level", bpo::value<std::string>(&args.radio_log_level)->default_value(args.radio_log_level), "RF Log level (none, warning, info, debug)")
("rf.rx_gain", bpo::value<float>(&args.rx_gain)->default_value(args.rx_gain), "RF Receiver gain in dB")
("rf.freq_offset", bpo::value<double>(&args.freq_offset_hz)->default_value(args.freq_offset_hz), "RF frequency offset in Hz")
;
options.add(measure).add(over_the_air).add_options()
("help,h", "Show this message")
("log_level", bpo::value<std::string>(&args.log_level)->default_value(args.log_level), "Intra measurement log level (none, warning, info, debug)")
("srate", bpo::value<double>(&args.srate_hz)->default_value(args.srate_hz), "Sampling Rate in Hz")
;
// clang-format on
bpo::variables_map vm;
try {
bpo::store(bpo::command_line_parser(argc, argv).options(options).run(), vm);
bpo::notify(vm);
} catch (bpo::error& e) {
std::cerr << e.what() << std::endl;
ret = SRSRAN_ERROR;
}
// help option was given or error - print usage and exit
if (vm.count("help") || ret) {
std::cout << "Usage: " << argv[0] << " [OPTIONS] config_file" << std::endl << std::endl;
std::cout << options << std::endl << std::endl;
ret = SRSRAN_ERROR;
}
return ret;
}
int main(int argc, char** argv)
{
// Parse args
args_t args = {};
if (parse_args(argc, argv, args) < SRSRAN_SUCCESS) {
return SRSRAN_ERROR;
}
// Initiate logging
srslog::init();
srslog::basic_logger& logger = srslog::fetch_basic_logger("PHY");
logger.set_level(srslog::str_to_basic_level(args.log_level));
// Deduce base-band parameters
uint32_t sf_len = (uint32_t)round(args.srate_hz / 1000.0);
// Allocate buffer
std::vector<cf_t> baseband_buffer(sf_len);
// Create measurement callback
meas_itf_listener rrc;
// Create measurement object
srsue::scell::intra_measure_nr intra_measure(logger, rrc);
// Initialise measurement instance
srsue::scell::intra_measure_nr::args_t meas_args = {};
meas_args.rx_gain_offset_dB = 0.0f;
meas_args.max_len_ms = args.meas_len_ms;
meas_args.max_srate_hz = args.srate_hz;
meas_args.min_scs = srsran_subcarrier_spacing_15kHz;
meas_args.thr_snr_db = args.thr_snr_db;
TESTASSERT(intra_measure.init(0, meas_args));
std::set<srsran_subcarrier_spacing_t> scs_set = {srsran_subcarrier_spacing_15kHz, srsran_subcarrier_spacing_30kHz};
std::set<uint16_t> band_set = {};
srsran::string_parse_list(args.bands, ',', band_set);
// Create Radio
srsran::radio radio;
auto& radio_logger = srslog::fetch_basic_logger("RF", false);
radio_logger.set_level(srslog::str_to_basic_level(args.radio_log_level));
// Init radio
srsran::rf_args_t radio_args = {};
radio_args.device_args = args.radio_device_args;
radio_args.device_name = args.radio_device_name;
radio_args.nof_carriers = 1;
radio_args.nof_antennas = 1;
radio.init(radio_args, nullptr);
// Set sampling rate
radio.set_rx_srate(args.srate_hz);
radio.set_rx_gain(args.rx_gain);
double center_freq_hz = 0.0;
uint32_t tti_count = 0;
// Iterate
for (const uint16_t& band : band_set) {
for (const srsran_subcarrier_spacing_t& scs : scs_set) {
srsran::srsran_band_helper::sync_raster_t sync_raster = srsran::srsran_band_helper().get_sync_raster(band, scs);
// Iterate over all GSCN
for (; not sync_raster.end(); sync_raster.next()) {
double ssb_freq_hz = sync_raster.get_frequency();
// Set frequency if the deviation from the current frequency is too high
if (std::abs(center_freq_hz - ssb_freq_hz) > (args.srate_hz / 2.0)) {
center_freq_hz = ssb_freq_hz + args.srate_hz / 2.0;
// Update Rx frequency
radio.set_rx_freq(0, center_freq_hz + args.freq_offset_hz);
}
logger.info("Measuring SSB frequency %.2f MHz, center %.2f MHz", ssb_freq_hz / 1e6, center_freq_hz / 1e6);
// Setup measurement
srsue::scell::intra_measure_nr::config_t meas_cfg = {};
meas_cfg.arfcn = (uint32_t)(ssb_freq_hz / 1e3);
meas_cfg.srate_hz = args.srate_hz;
meas_cfg.len_ms = args.meas_len_ms;
meas_cfg.period_ms = args.meas_period_ms;
meas_cfg.center_freq_hz = center_freq_hz;
meas_cfg.ssb_freq_hz = ssb_freq_hz;
meas_cfg.scs = scs;
meas_cfg.serving_cell_pci = -1;
TESTASSERT(intra_measure.set_config(meas_cfg));
srsran::rf_buffer_t radio_buffer(baseband_buffer.data(), sf_len);
srsran::rf_timestamp_t ts = {};
// Start measurements
intra_measure.set_cells_to_meas({});
for (uint32_t i = 0; i < args.meas_period_ms * 5; i++) {
radio.rx_now(radio_buffer, ts);
intra_measure.run_tti(tti_count, baseband_buffer.data(), sf_len);
tti_count = TTI_ADD(tti_count, 1);
}
// Stop measurements
intra_measure.meas_stop();
}
}
}
// Stop radio before it overflows
radio.stop();
// make sure last measurement has been received before stopping
intra_measure.wait_meas();
// Stop, it will block until the asynchronous thread quits
intra_measure.stop();
logger.warning("NR intra frequency performance %d Msps\n", intra_measure.get_perf());
srslog::flush();
rrc.print_stats();
return EXIT_SUCCESS;
}