mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
469 lines
15 KiB
C
469 lines
15 KiB
C
/**
|
|
*
|
|
* \section COPYRIGHT
|
|
*
|
|
* Copyright 2013-2015 Software Radio Systems Limited
|
|
*
|
|
* \section LICENSE
|
|
*
|
|
* This file is part of the srsLTE library.
|
|
*
|
|
* srsLTE is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Affero General Public License as
|
|
* published by the Free Software Foundation, either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* srsLTE is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Affero General Public License for more details.
|
|
*
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
* and at http://www.gnu.org/licenses/.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <complex.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "srslte/common/phy_common.h"
|
|
#include "srslte/mimo/precoding.h"
|
|
#include "srslte/utils/vector.h"
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
#include <xmmintrin.h>
|
|
#include <pmmintrin.h>
|
|
int srslte_predecoding_single_sse(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate);
|
|
int srslte_predecoding_diversity2_sse(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS], int nof_symbols);
|
|
#endif
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
#include <immintrin.h>
|
|
int srslte_predecoding_single_avx(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate);
|
|
#endif
|
|
|
|
|
|
|
|
/************************************************
|
|
*
|
|
* RECEIVER SIDE FUNCTIONS
|
|
*
|
|
**************************************************/
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
|
|
#define PROD(a,b) _mm_addsub_ps(_mm_mul_ps(a,_mm_moveldup_ps(b)),_mm_mul_ps(_mm_shuffle_ps(a,a,0xB1),_mm_movehdup_ps(b)))
|
|
|
|
int srslte_predecoding_single_sse(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
float *xPtr = (float*) x;
|
|
const float *hPtr = (const float*) h;
|
|
const float *yPtr = (const float*) y;
|
|
|
|
__m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
|
|
|
|
__m128 noise = _mm_set1_ps(noise_estimate);
|
|
__m128 h1Val, h2Val, y1Val, y2Val, h12square, h1square, h2square, h1conj, h2conj, x1Val, x2Val;
|
|
for (int i=0;i<nof_symbols/4;i++) {
|
|
y1Val = _mm_load_ps(yPtr); yPtr+=4;
|
|
y2Val = _mm_load_ps(yPtr); yPtr+=4;
|
|
h1Val = _mm_load_ps(hPtr); hPtr+=4;
|
|
h2Val = _mm_load_ps(hPtr); hPtr+=4;
|
|
|
|
h12square = _mm_hadd_ps(_mm_mul_ps(h1Val, h1Val), _mm_mul_ps(h2Val, h2Val));
|
|
if (noise_estimate > 0) {
|
|
h12square = _mm_add_ps(h12square, noise);
|
|
}
|
|
|
|
h1square = _mm_shuffle_ps(h12square, h12square, _MM_SHUFFLE(1, 1, 0, 0));
|
|
h2square = _mm_shuffle_ps(h12square, h12square, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
/* Conjugate channel */
|
|
h1conj = _mm_xor_ps(h1Val, conjugator);
|
|
h2conj = _mm_xor_ps(h2Val, conjugator);
|
|
|
|
/* Complex product */
|
|
x1Val = PROD(y1Val, h1conj);
|
|
x2Val = PROD(y2Val, h2conj);
|
|
|
|
x1Val = _mm_div_ps(x1Val, h1square);
|
|
x2Val = _mm_div_ps(x2Val, h2square);
|
|
|
|
_mm_store_ps(xPtr, x1Val); xPtr+=4;
|
|
_mm_store_ps(xPtr, x2Val); xPtr+=4;
|
|
}
|
|
for (int i=8*(nof_symbols/8);i<nof_symbols;i++) {
|
|
x[i] = y[i]*conj(h[i])/(conj(h[i])*h[i]+noise_estimate);
|
|
}
|
|
return nof_symbols;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
|
|
#define PROD_AVX(a,b) _mm256_addsub_ps(_mm256_mul_ps(a,_mm256_moveldup_ps(b)),_mm256_mul_ps(_mm256_shuffle_ps(a,a,0xB1),_mm256_movehdup_ps(b)))
|
|
|
|
|
|
|
|
int srslte_predecoding_single_avx(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
float *xPtr = (float*) x;
|
|
const float *hPtr = (const float*) h;
|
|
const float *yPtr = (const float*) y;
|
|
|
|
__m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
|
|
|
|
__m256 noise = _mm256_set1_ps(noise_estimate);
|
|
__m256 h1Val, h2Val, y1Val, y2Val, h12square, h1square, h2square, h1_p, h2_p, h1conj, h2conj, x1Val, x2Val;
|
|
|
|
for (int i=0;i<nof_symbols/8;i++) {
|
|
y1Val = _mm256_load_ps(yPtr); yPtr+=8;
|
|
y2Val = _mm256_load_ps(yPtr); yPtr+=8;
|
|
h1Val = _mm256_load_ps(hPtr); hPtr+=8;
|
|
h2Val = _mm256_load_ps(hPtr); hPtr+=8;
|
|
|
|
__m256 t1 = _mm256_mul_ps(h1Val, h1Val);
|
|
__m256 t2 = _mm256_mul_ps(h2Val, h2Val);
|
|
h12square = _mm256_hadd_ps(_mm256_permute2f128_ps(t1, t2, 0x20), _mm256_permute2f128_ps(t1, t2, 0x31));
|
|
if (noise_estimate > 0) {
|
|
h12square = _mm256_add_ps(h12square, noise);
|
|
}
|
|
h1_p = _mm256_permute_ps(h12square, _MM_SHUFFLE(1, 1, 0, 0));
|
|
h2_p = _mm256_permute_ps(h12square, _MM_SHUFFLE(3, 3, 2, 2));
|
|
h1square = _mm256_permute2f128_ps(h1_p, h2_p, 2<<4);
|
|
h2square = _mm256_permute2f128_ps(h1_p, h2_p, 3<<4 | 1);
|
|
|
|
/* Conjugate channel */
|
|
h1conj = _mm256_xor_ps(h1Val, conjugator);
|
|
h2conj = _mm256_xor_ps(h2Val, conjugator);
|
|
|
|
/* Complex product */
|
|
x1Val = PROD_AVX(y1Val, h1conj);
|
|
x2Val = PROD_AVX(y2Val, h2conj);
|
|
|
|
x1Val = _mm256_div_ps(x1Val, h1square);
|
|
x2Val = _mm256_div_ps(x2Val, h2square);
|
|
|
|
_mm256_store_ps(xPtr, x1Val); xPtr+=8;
|
|
_mm256_store_ps(xPtr, x2Val); xPtr+=8;
|
|
}
|
|
for (int i=16*(nof_symbols/16);i<nof_symbols;i++) {
|
|
x[i] = y[i]*conj(h[i])/(conj(h[i])*h[i]+noise_estimate);
|
|
}
|
|
return nof_symbols;
|
|
}
|
|
|
|
#endif
|
|
|
|
int srslte_predecoding_single_gen(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
for (int i=0;i<nof_symbols;i++) {
|
|
x[i] = y[i]*conj(h[i])/(conj(h[i])*h[i]+noise_estimate);
|
|
}
|
|
return nof_symbols;
|
|
}
|
|
|
|
/* ZF/MMSE SISO equalizer x=y(h'h+no)^(-1)h' (ZF if n0=0.0)*/
|
|
int srslte_predecoding_single(cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
#ifdef LV_HAVE_AVX
|
|
if (nof_symbols > 32) {
|
|
return srslte_predecoding_single_avx(y, h, x, nof_symbols, noise_estimate);
|
|
} else {
|
|
return srslte_predecoding_single_gen(y, h, x, nof_symbols, noise_estimate);
|
|
}
|
|
#else
|
|
#ifdef LV_HAVE_SSE
|
|
if (nof_symbols > 32) {
|
|
return srslte_predecoding_single_sse(y, h, x, nof_symbols, noise_estimate);
|
|
} else {
|
|
return srslte_predecoding_single_gen(y, h, x, nof_symbols, noise_estimate);
|
|
}
|
|
#else
|
|
return srslte_predecoding_single_gen(y, h, x, nof_symbols, noise_estimate);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/* C implementatino of the SFBC equalizer */
|
|
int srslte_predecoding_diversity_gen_(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_ports, int nof_symbols, int symbol_start)
|
|
{
|
|
int i;
|
|
if (nof_ports == 2) {
|
|
cf_t h00, h01, h10, h11, r0, r1;
|
|
float hh;
|
|
|
|
for (i = symbol_start/2; i < nof_symbols / 2; i++) {
|
|
h00 = h[0][2 * i];
|
|
h01 = h[0][2 * i+1];
|
|
h10 = h[1][2 * i];
|
|
h11 = h[1][2 * i+1];
|
|
hh = crealf(h00) * crealf(h00) + cimagf(h00) * cimagf(h00)
|
|
+ crealf(h11) * crealf(h11) + cimagf(h11) * cimagf(h11);
|
|
r0 = y[2 * i];
|
|
r1 = y[2 * i + 1];
|
|
if (hh == 0) {
|
|
hh = 1e-4;
|
|
}
|
|
x[0][i] = (conjf(h00) * r0 + h11 * conjf(r1)) / hh * sqrt(2);
|
|
x[1][i] = (-h10 * conj(r0) + conj(h01) * r1) / hh * sqrt(2);
|
|
}
|
|
return i;
|
|
} else if (nof_ports == 4) {
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
float hh02, hh13;
|
|
|
|
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
|
|
for (i = symbol_start; i < m_ap; i++) {
|
|
h0 = h[0][4 * i];
|
|
h1 = h[1][4 * i + 2];
|
|
h2 = h[2][4 * i];
|
|
h3 = h[3][4 * i + 2];
|
|
hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
|
|
hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
|
|
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
|
|
r0 = y[4 * i];
|
|
r1 = y[4 * i + 1];
|
|
r2 = y[4 * i + 2];
|
|
r3 = y[4 * i + 3];
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2);
|
|
x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2);
|
|
x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2);
|
|
x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2);
|
|
|
|
}
|
|
return i;
|
|
} else {
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int srslte_predecoding_diversity_gen(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_ports, int nof_symbols) {
|
|
return srslte_predecoding_diversity_gen_(y, h, x, nof_ports, nof_symbols, 0);
|
|
}
|
|
|
|
/* SSE implementation of the 2-port SFBC equalizer */
|
|
#ifdef LV_HAVE_SSE
|
|
int srslte_predecoding_diversity2_sse(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS], int nof_symbols)
|
|
{
|
|
float *x0Ptr = (float*) x[0];
|
|
float *x1Ptr = (float*) x[1];
|
|
const float *h0Ptr = (const float*) h[0];
|
|
const float *h1Ptr = (const float*) h[1];
|
|
const float *yPtr = (const float*) y;
|
|
|
|
__m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
|
|
__m128 sqrt2 = _mm_setr_ps(sqrt(2), sqrt(2), sqrt(2), sqrt(2));
|
|
|
|
__m128 h0Val_0, h0Val_1, h1Val_0, h1Val_1, h00, h00conj, h01, h01conj, h10, h11, hh, hhshuf, hhsum, hhadd;
|
|
__m128 r0Val, r1Val, r0, r1, r0conj, r1conj;
|
|
__m128 x0, x1;
|
|
|
|
for (int i=0;i<nof_symbols/4;i++) {
|
|
|
|
h0Val_0 = _mm_load_ps(h0Ptr); h0Ptr+=4; h0Val_1 = _mm_load_ps(h0Ptr); h0Ptr+=4;
|
|
h1Val_0 = _mm_load_ps(h1Ptr); h1Ptr+=4; h1Val_1 = _mm_load_ps(h1Ptr); h1Ptr+=4;
|
|
|
|
h00 = _mm_shuffle_ps(h0Val_0, h0Val_1, _MM_SHUFFLE(1, 0, 1, 0));
|
|
h01 = _mm_shuffle_ps(h0Val_0, h0Val_1, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
h10 = _mm_shuffle_ps(h1Val_0, h1Val_1, _MM_SHUFFLE(1, 0, 1, 0));
|
|
h11 = _mm_shuffle_ps(h1Val_0, h1Val_1, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
r0Val = _mm_load_ps(yPtr); yPtr+=4;
|
|
r1Val = _mm_load_ps(yPtr); yPtr+=4;
|
|
r0 = _mm_shuffle_ps(r0Val, r1Val, _MM_SHUFFLE(1, 0, 1, 0));
|
|
r1 = _mm_shuffle_ps(r0Val, r1Val, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
/* Compute channel gain */
|
|
hhadd = _mm_hadd_ps(_mm_mul_ps(h00, h00), _mm_mul_ps(h11, h11));
|
|
hhshuf = _mm_shuffle_ps(hhadd, hhadd, _MM_SHUFFLE(3, 1, 2, 0));
|
|
hhsum = _mm_hadd_ps(hhshuf, hhshuf);
|
|
hh = _mm_shuffle_ps(hhsum, hhsum, _MM_SHUFFLE(1, 1, 0, 0)); // h00^2+h11^2
|
|
|
|
// Conjugate value
|
|
h00conj = _mm_xor_ps(h00, conjugator);
|
|
h01conj = _mm_xor_ps(h01, conjugator);
|
|
r0conj = _mm_xor_ps(r0, conjugator);
|
|
r1conj = _mm_xor_ps(r1, conjugator);
|
|
|
|
// Multiply by channel matrix
|
|
x0 = _mm_add_ps(PROD(h00conj, r0), PROD(h11, r1conj));
|
|
x1 = _mm_sub_ps(PROD(h01conj, r1), PROD(h10, r0conj));
|
|
|
|
x0 = _mm_mul_ps(_mm_div_ps(x0, hh), sqrt2);
|
|
x1 = _mm_mul_ps(_mm_div_ps(x1, hh), sqrt2);
|
|
|
|
_mm_store_ps(x0Ptr, x0); x0Ptr+=4;
|
|
_mm_store_ps(x1Ptr, x1); x1Ptr+=4;
|
|
}
|
|
// Compute remaining symbols using generic implementation
|
|
srslte_predecoding_diversity_gen_(y, h, x, 2, nof_symbols, 4*(nof_symbols/4));
|
|
return nof_symbols;
|
|
}
|
|
#endif
|
|
|
|
int srslte_predecoding_diversity(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_ports, int nof_symbols)
|
|
{
|
|
#ifdef LV_HAVE_SSE
|
|
if (nof_symbols > 32 && nof_ports == 2) {
|
|
return srslte_predecoding_diversity2_sse(y, h, x, nof_symbols);
|
|
} else {
|
|
return srslte_predecoding_diversity_gen(y, h, x, nof_ports, nof_symbols);
|
|
}
|
|
#else
|
|
return srslte_predecoding_diversity_gen(y, h, x, nof_ports, nof_symbols);
|
|
#endif
|
|
}
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
int srslte_predecoding_type(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_ports, int nof_layers, int nof_symbols, srslte_mimo_type_t type, float noise_estimate) {
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
nof_ports);
|
|
return -1;
|
|
}
|
|
if (nof_layers > SRSLTE_MAX_LAYERS) {
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
SRSLTE_MAX_LAYERS, nof_layers);
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA:
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
return srslte_predecoding_single(y, h[0], x[0], nof_symbols, noise_estimate);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SRSLTE_MIMO_TYPE_TX_DIVERSITY:
|
|
if (nof_ports == nof_layers) {
|
|
return srslte_predecoding_diversity(y, h, x, nof_ports, nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX:
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************
|
|
*
|
|
* TRANSMITTER SIDE FUNCTIONS
|
|
*
|
|
**************************************************/
|
|
|
|
int srslte_precoding_single(cf_t *x, cf_t *y, int nof_symbols) {
|
|
memcpy(y, x, nof_symbols * sizeof(cf_t));
|
|
return nof_symbols;
|
|
}
|
|
int srslte_precoding_diversity(cf_t *x[SRSLTE_MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_ports,
|
|
int nof_symbols) {
|
|
int i;
|
|
if (nof_ports == 2) {
|
|
for (i = 0; i < nof_symbols; i++) {
|
|
y[0][2 * i] = x[0][i];
|
|
y[1][2 * i] = -conjf(x[1][i]);
|
|
y[0][2 * i + 1] = x[1][i];
|
|
y[1][2 * i + 1] = conjf(x[0][i]);
|
|
}
|
|
// normalize
|
|
srslte_vec_sc_prod_cfc(y[0], 1.0/sqrtf(2), y[0], 2*nof_symbols);
|
|
srslte_vec_sc_prod_cfc(y[1], 1.0/sqrtf(2), y[1], 2*nof_symbols);
|
|
return 2 * i;
|
|
} else if (nof_ports == 4) {
|
|
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
|
|
int m_ap = 4 * nof_symbols;
|
|
for (i = 0; i < m_ap / 4; i++) {
|
|
y[0][4 * i] = x[0][i] / sqrtf(2);
|
|
y[1][4 * i] = 0;
|
|
y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
y[3][4 * i] = 0;
|
|
|
|
y[0][4 * i + 1] = x[1][i] / sqrtf(2);
|
|
y[1][4 * i + 1] = 0;
|
|
y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
y[3][4 * i + 1] = 0;
|
|
|
|
y[0][4 * i + 2] = 0;
|
|
y[1][4 * i + 2] = x[2][i] / sqrtf(2);
|
|
y[2][4 * i + 2] = 0;
|
|
y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2);
|
|
|
|
y[0][4 * i + 3] = 0;
|
|
y[1][4 * i + 3] = x[3][i] / sqrtf(2);
|
|
y[2][4 * i + 3] = 0;
|
|
y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2);
|
|
}
|
|
return 4 * i;
|
|
} else {
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
int srslte_precoding_type(cf_t *x[SRSLTE_MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_layers,
|
|
int nof_ports, int nof_symbols, srslte_mimo_type_t type) {
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
nof_ports);
|
|
return -1;
|
|
}
|
|
if (nof_layers > SRSLTE_MAX_LAYERS) {
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
SRSLTE_MAX_LAYERS, nof_layers);
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA:
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
return srslte_precoding_single(x[0], y[0], nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SRSLTE_MIMO_TYPE_TX_DIVERSITY:
|
|
if (nof_ports == nof_layers) {
|
|
return srslte_precoding_diversity(x, y, nof_ports, nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
return -1;
|
|
}
|
|
case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX:
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|