You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/upper/rlc_stress_test.cc

566 lines
17 KiB
C++

/**
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/common/crash_handler.h"
#include "srslte/common/log_filter.h"
#include "srslte/common/rlc_pcap.h"
#include "srslte/common/threads.h"
#include "srslte/upper/rlc.h"
#include <boost/program_options.hpp>
#include <boost/program_options/parsers.hpp>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <pthread.h>
#include <random>
#define LOG_HEX_LIMIT (-1)
#define PCAP 0
#define PCAP_CRNTI (0x1001)
#define PCAP_TTI (666)
#if PCAP
#include "srslte/common/mac_nr_pcap.h"
#include "srslte/mac/mac_nr_pdu.h"
static std::unique_ptr<srslte::mac_nr_pcap> pcap_handle = nullptr;
#endif
int write_pdu_to_pcap(const bool is_dl, const uint32_t lcid, const uint8_t* payload, const uint32_t len)
{
#if PCAP
if (pcap_handle) {
srslte::byte_buffer_t tx_buffer;
srslte::mac_nr_sch_pdu tx_pdu;
tx_pdu.init_tx(&tx_buffer, len + 10);
tx_pdu.add_sdu(lcid, payload, len);
tx_pdu.pack();
if (is_dl) {
pcap_handle->write_dl_crnti(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI);
} else {
pcap_handle->write_ul_crnti(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI);
}
return SRSLTE_SUCCESS;
}
#endif
return SRSLTE_ERROR;
}
using namespace std;
using namespace srsue;
using namespace srslte;
namespace bpo = boost::program_options;
typedef struct {
std::string rat;
std::string mode;
uint32_t sdu_size;
uint32_t test_duration_sec;
float pdu_drop_rate;
float pdu_cut_rate;
float pdu_duplicate_rate;
uint32_t sdu_gen_delay_usec;
uint32_t pdu_tx_delay_usec;
bool reestablish;
uint32_t log_level;
bool single_tx;
bool write_pcap;
uint32_t avg_opp_size;
bool random_opp;
bool zero_seed;
bool pedantic_sdu_check;
uint32_t nof_pdu_tti;
} stress_test_args_t;
void parse_args(stress_test_args_t* args, int argc, char* argv[])
{
// Command line only options
bpo::options_description general("General options");
general.add_options()("help,h", "Produce help message")("version,v", "Print version information and exit");
// clang-format off
// Command line or config file options
bpo::options_description common("Configuration options");
common.add_options()
("rat", bpo::value<std::string>(&args->rat)->default_value("LTE"), "The RLC version to use (LTE/NR)")
("mode", bpo::value<std::string>(&args->mode)->default_value("AM"), "Whether to test RLC acknowledged or unacknowledged mode (AM/UM)")
("duration", bpo::value<uint32_t>(&args->test_duration_sec)->default_value(5), "Duration (sec)")
("sdu_size", bpo::value<uint32_t>(&args->sdu_size)->default_value(1500), "Size of SDUs")
("avg_opp_size", bpo::value<uint32_t>(&args->avg_opp_size)->default_value(1505), "Size of the MAC opportunity (if not random)")
("random_opp", bpo::value<bool>(&args->random_opp)->default_value(true), "Whether to generate random MAC opportunities")
("sdu_gen_delay", bpo::value<uint32_t>(&args->sdu_gen_delay_usec)->default_value(0), "SDU generation delay (usec)")
("pdu_tx_delay", bpo::value<uint32_t>(&args->pdu_tx_delay_usec)->default_value(0), "Delay in MAC for transfering PDU from tx'ing RLC to rx'ing RLC (usec)")
("pdu_drop_rate", bpo::value<float>(&args->pdu_drop_rate)->default_value(0.1), "Rate at which RLC PDUs are dropped")
("pdu_cut_rate", bpo::value<float>(&args->pdu_cut_rate)->default_value(0.0), "Rate at which RLC PDUs are chopped in length")
("pdu_duplicate_rate", bpo::value<float>(&args->pdu_duplicate_rate)->default_value(0.0), "Rate at which RLC PDUs are duplicated")
("reestablish", bpo::value<bool>(&args->reestablish)->default_value(false), "Mimic RLC reestablish during execution")
("loglevel", bpo::value<uint32_t>(&args->log_level)->default_value(srslte::LOG_LEVEL_DEBUG), "Log level (1=Error,2=Warning,3=Info,4=Debug)")
("singletx", bpo::value<bool>(&args->single_tx)->default_value(false), "If set to true, only one node is generating data")
("pcap", bpo::value<bool>(&args->write_pcap)->default_value(false), "Whether to write all RLC PDU to PCAP file")
("zeroseed", bpo::value<bool>(&args->zero_seed)->default_value(false), "Whether to initialize random seed to zero")
("pedantic", bpo::value<bool>(&args->pedantic_sdu_check)->default_value(false), "Whether to check SDU length and exit on error")
("nof_pdu_tti", bpo::value<uint32_t>(&args->nof_pdu_tti)->default_value(1), "Number of PDUs processed in a TTI");
// clang-format on
// these options are allowed on the command line
bpo::options_description cmdline_options;
cmdline_options.add(common).add(general);
// parse the command line and store result in vm
bpo::variables_map vm;
bpo::store(bpo::command_line_parser(argc, argv).options(cmdline_options).run(), vm);
bpo::notify(vm);
// help option was given - print usage and exit
if (vm.count("help") > 0) {
cout << "Usage: " << argv[0] << " [OPTIONS] config_file" << endl << endl;
cout << common << endl << general << endl;
exit(0);
}
if (args->log_level > 4) {
args->log_level = 4;
printf("Set log level to %d (%s)\n", args->log_level, srslte::log_level_text[args->log_level]);
}
}
class mac_dummy : public thread
{
public:
mac_dummy(rlc_interface_mac* rlc1_,
rlc_interface_mac* rlc2_,
stress_test_args_t args_,
uint32_t lcid_,
timer_handler* timers_,
rlc_pcap* pcap_ = NULL) :
run_enable(true),
rlc1(rlc1_),
rlc2(rlc2_),
args(args_),
pcap(pcap_),
lcid(lcid_),
timers(timers_),
log("MAC "),
thread("MAC_DUMMY"),
real_dist(0.0, 1.0),
mt19937(1234),
pool(byte_buffer_pool::get_instance())
{
log.set_level(static_cast<LOG_LEVEL_ENUM>(args.log_level));
log.set_hex_limit(LOG_HEX_LIMIT);
}
void stop()
{
run_enable = false;
wait_thread_finish();
}
void enqueue_task(srslte::move_task_t task) { pending_tasks.push(std::move(task)); }
private:
void run_tx_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, std::vector<unique_byte_buffer_t>& pdu_list)
{
// Generate A number of MAC PDUs
for (uint32_t i = 0; i < args.nof_pdu_tti; i++) {
// Create PDU unique buffer
unique_byte_buffer_t pdu = srslte::allocate_unique_buffer(*pool, __PRETTY_FUNCTION__, true);
if (!pdu) {
printf("Fatal Error: Could not allocate PDU in mac_reader::run_thread\n");
exit(-1);
}
// Get MAC PDU size
float factor = 1.0f;
if (args.random_opp) {
factor = 0.5f + real_dist(mt19937);
}
int opp_size = static_cast<int>(args.avg_opp_size * factor);
// Request data to transmit
uint32_t buf_state = tx_rlc->get_buffer_state(lcid);
if (buf_state > 0) {
int read = tx_rlc->read_pdu(lcid, pdu->msg, opp_size);
pdu->N_bytes = read;
// Push PDU in the list
pdu_list.push_back(std::move(pdu));
}
}
}
void run_rx_tti(rlc_interface_mac* tx_rlc,
rlc_interface_mac* rx_rlc,
bool is_dl,
std::vector<unique_byte_buffer_t>& pdu_list)
{
// Sleep if necessary
if (args.pdu_tx_delay_usec > 0) {
usleep(args.pdu_tx_delay_usec);
}
auto it = pdu_list.begin(); // PDU iterator
bool skip_action = false; // Avoid discarding a duplicated or duplicating a discarded
while (it != pdu_list.end()) {
// Get PDU unique buffer
unique_byte_buffer_t& pdu = *it;
// Drop
float rnd = real_dist(mt19937);
if (std::isnan(rnd) || (((rnd > args.pdu_drop_rate) || skip_action) && pdu->N_bytes > 0)) {
uint32_t pdu_len = pdu->N_bytes;
// Cut
if ((real_dist(mt19937) < args.pdu_cut_rate)) {
int cut_pdu_len = static_cast<int>(pdu_len * real_dist(mt19937));
log.info("Cutting MAC PDU len (%d B -> %d B)\n", pdu_len, cut_pdu_len);
pdu_len = cut_pdu_len;
}
// Write PDU in RX
rx_rlc->write_pdu(lcid, pdu->msg, pdu_len);
// Write PCAP
write_pdu_to_pcap(is_dl, 4, pdu->msg, pdu_len); // Only handles NR rat
if (is_dl) {
pcap->write_dl_ccch(pdu->msg, pdu_len);
} else {
pcap->write_ul_ccch(pdu->msg, pdu_len);
}
} else {
log.warning_hex(pdu->msg, pdu->N_bytes, "Dropping RLC PDU (%d B)\n", pdu->N_bytes);
skip_action = true; // Avoid drop duplicating this PDU
}
// Duplicate
if (real_dist(mt19937) > args.pdu_duplicate_rate || skip_action) {
it++;
skip_action = false; // Allow action on the next PDU
} else {
log.warning_hex(pdu->msg, pdu->N_bytes, "Duplicating RLC PDU (%d B)\n", pdu->N_bytes);
skip_action = true; // Avoid drop of this PDU
}
}
}
void run_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, bool is_dl)
{
std::vector<unique_byte_buffer_t> pdu_list;
// Run Tx
run_tx_tti(tx_rlc, rx_rlc, pdu_list);
// Reverse PDUs
std::reverse(pdu_list.begin(), pdu_list.end());
// Run Rx
run_rx_tti(tx_rlc, rx_rlc, is_dl, pdu_list);
}
void run_thread() override
{
srslte::move_task_t task;
while (run_enable) {
// Downlink direction first (RLC1->RLC2)
run_tti(rlc1, rlc2, true);
// UL direction (RLC2->RLC1)
run_tti(rlc2, rlc1, false);
// step timer
timers->step_all();
if (pending_tasks.try_pop(&task)) {
task();
}
}
if (pending_tasks.try_pop(&task)) {
task();
}
}
rlc_interface_mac* rlc1;
rlc_interface_mac* rlc2;
bool run_enable;
stress_test_args_t args;
rlc_pcap* pcap;
uint32_t lcid;
srslte::log_filter log;
srslte::timer_handler* timers = nullptr;
srslte::block_queue<srslte::move_task_t> pending_tasks;
std::mt19937 mt19937;
std::uniform_real_distribution<float> real_dist;
byte_buffer_pool* pool = nullptr;
};
class rlc_tester : public pdcp_interface_rlc, public rrc_interface_rlc, public thread
{
public:
rlc_tester(rlc_interface_pdcp* rlc_, std::string name_, stress_test_args_t args_, uint32_t lcid_) :
log("TEST"),
rlc(rlc_),
run_enable(true),
rx_pdus(),
name(name_),
args(args_),
lcid(lcid_),
thread("RLC_TESTER")
{
log.set_level(srslte::LOG_LEVEL_ERROR);
log.set_hex_limit(LOG_HEX_LIMIT);
}
void stop()
{
run_enable = false;
wait_thread_finish();
}
// PDCP interface
void write_pdu(uint32_t rx_lcid, unique_byte_buffer_t sdu)
{
assert(rx_lcid == lcid);
if (sdu->N_bytes != args.sdu_size) {
log.error_hex(sdu->msg, sdu->N_bytes, "Received SDU with size %d, expected %d.\n", sdu->N_bytes, args.sdu_size);
if (args.pedantic_sdu_check) {
exit(-1);
}
}
rx_pdus++;
}
void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {}
void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {}
void write_pdu_pcch(unique_byte_buffer_t sdu) {}
void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t sdu) {}
// RRC interface
void max_retx_attempted() {}
std::string get_rb_name(uint32_t rx_lcid) { return std::string("DRB1"); }
int get_nof_rx_pdus() { return rx_pdus; }
private:
void run_thread()
{
uint8_t sn = 0;
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
while (run_enable) {
unique_byte_buffer_t pdu = srslte::allocate_unique_buffer(*pool, "rlc_tester::run_thread", true);
if (pdu == NULL) {
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
// backoff for a bit
usleep(1000);
continue;
}
for (uint32_t i = 0; i < args.sdu_size; i++) {
pdu->msg[i] = sn;
}
sn++;
pdu->N_bytes = args.sdu_size;
rlc->write_sdu(lcid, std::move(pdu));
if (args.sdu_gen_delay_usec > 0) {
usleep(args.sdu_gen_delay_usec);
}
}
}
bool run_enable;
uint64_t rx_pdus;
uint32_t lcid;
srslte::log_filter log;
std::string name;
stress_test_args_t args;
rlc_interface_pdcp* rlc;
};
void stress_test(stress_test_args_t args)
{
srslte::log_ref log1("RLC_1");
srslte::log_ref log2("RLC_2");
log1->set_level(static_cast<LOG_LEVEL_ENUM>(args.log_level));
log2->set_level(static_cast<LOG_LEVEL_ENUM>(args.log_level));
log1->set_hex_limit(LOG_HEX_LIMIT);
log2->set_hex_limit(LOG_HEX_LIMIT);
rlc_pcap pcap;
uint32_t lcid = 1;
rlc_config_t cnfg_ = {};
if (args.rat == "LTE") {
if (args.mode == "AM") {
// config RLC AM bearer
cnfg_.rlc_mode = rlc_mode_t::am;
cnfg_.am.max_retx_thresh = 4;
cnfg_.am.poll_byte = 25 * 1000;
cnfg_.am.poll_pdu = 4;
cnfg_.am.t_poll_retx = 5;
cnfg_.am.t_reordering = 5;
cnfg_.am.t_status_prohibit = 5;
} else if (args.mode == "UM") {
// config UM bearer
cnfg_.rlc_mode = rlc_mode_t::um;
cnfg_.um.t_reordering = 5;
cnfg_.um.rx_mod = 32;
cnfg_.um.rx_sn_field_length = rlc_umd_sn_size_t::size5bits;
cnfg_.um.rx_window_size = 16;
cnfg_.um.tx_sn_field_length = rlc_umd_sn_size_t::size5bits;
cnfg_.um.tx_mod = 32;
} else if (args.mode == "TM") {
// use default LCID in TM
lcid = 0;
} else {
cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl;
exit(-1);
}
#if PCAP
if (args.write_pcap) {
pcap.open("rlc_stress_test.pcap", cnfg_);
}
#endif
} else if (args.rat == "NR") {
if (args.mode == "UM") {
cnfg_ = rlc_config_t::default_rlc_um_nr_config(6);
} else {
cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl;
exit(-1);
}
#if PCAP
if (args.write_pcap) {
pcap_handle = std::unique_ptr<srslte::mac_nr_pcap>(new srslte::mac_nr_pcap());
pcap_handle->open("rlc_stress_test_nr.pcap");
}
#endif
} else {
cout << "Unsupported RAT mode " << args.rat << ", exiting." << endl;
exit(-1);
}
srslte::timer_handler timers(8);
rlc rlc1(log1->get_service_name().c_str());
rlc rlc2(log2->get_service_name().c_str());
rlc_tester tester1(&rlc1, "tester1", args, lcid);
rlc_tester tester2(&rlc2, "tester2", args, lcid);
mac_dummy mac(&rlc1, &rlc2, args, lcid, &timers, &pcap);
rlc1.init(&tester1, &tester1, &timers, 0);
rlc2.init(&tester2, &tester2, &timers, 0);
// only add AM and UM bearers
if (args.mode != "TM") {
rlc1.add_bearer(lcid, cnfg_);
rlc2.add_bearer(lcid, cnfg_);
}
tester1.start(7);
if (!args.single_tx) {
tester2.start(7);
}
mac.start();
if (args.test_duration_sec < 1) {
args.test_duration_sec = 1;
}
for (uint32_t i = 0; i < args.test_duration_sec; i++) {
// if enabled, mimic reestablishment every second
if (args.reestablish) {
rlc1.reestablish();
rlc2.reestablish();
}
usleep(1e6);
}
printf("Test finished, tearing down ..\n");
// Stop RLC instances first to release blocking writers
mac.enqueue_task([&rlc1, &rlc2]() {
rlc1.stop();
rlc2.stop();
});
printf("RLC entities stopped.\n");
// Stop upper layer writers
tester1.stop();
tester2.stop();
printf("Writers stopped.\n");
mac.stop();
if (args.write_pcap) {
pcap.close();
}
rlc_metrics_t metrics = {};
rlc1.get_metrics(metrics, 1);
printf("RLC1 received %d SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n",
tester1.get_nof_rx_pdus(),
args.test_duration_sec,
static_cast<double>(tester1.get_nof_rx_pdus() / args.test_duration_sec),
metrics.bearer[lcid].num_tx_pdu_bytes,
metrics.bearer[lcid].num_rx_pdu_bytes);
rlc_bearer_metrics_print(metrics.bearer[lcid]);
rlc2.get_metrics(metrics, 1);
printf("RLC2 received %d SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n",
tester2.get_nof_rx_pdus(),
args.test_duration_sec,
static_cast<double>(tester2.get_nof_rx_pdus() / args.test_duration_sec),
metrics.bearer[lcid].num_tx_pdu_bytes,
metrics.bearer[lcid].num_rx_pdu_bytes);
rlc_bearer_metrics_print(metrics.bearer[lcid]);
}
int main(int argc, char** argv)
{
srslte_debug_handle_crash(argc, argv);
stress_test_args_t args = {};
parse_args(&args, argc, argv);
if (args.zero_seed) {
srand(0);
} else {
srand(time(NULL));
}
stress_test(args);
exit(0);
}