mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
303 lines
8.3 KiB
C++
303 lines
8.3 KiB
C++
/**
|
|
* Copyright 2013-2021 Software Radio Systems Limited
|
|
*
|
|
* This file is part of srsLTE.
|
|
*
|
|
* srsLTE is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Affero General Public License as
|
|
* published by the Free Software Foundation, either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* srsLTE is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Affero General Public License for more details.
|
|
*
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
* and at http://www.gnu.org/licenses/.
|
|
*
|
|
*/
|
|
|
|
#ifndef SRSLTE_MEM_POOL_H
|
|
#define SRSLTE_MEM_POOL_H
|
|
|
|
#include "srslte/common/thread_pool.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <mutex>
|
|
|
|
namespace srslte {
|
|
|
|
/// Stores provided mem blocks in a stack in an non-owning manner. Not thread-safe
|
|
class memblock_stack
|
|
{
|
|
struct node {
|
|
node* prev;
|
|
explicit node(node* prev_) : prev(prev_) {}
|
|
};
|
|
|
|
public:
|
|
constexpr static size_t min_memblock_size() { return sizeof(node); }
|
|
|
|
memblock_stack() = default;
|
|
|
|
memblock_stack(const memblock_stack&) = delete;
|
|
|
|
memblock_stack(memblock_stack&& other) noexcept : head(other.head) { other.head = nullptr; }
|
|
|
|
memblock_stack& operator=(const memblock_stack&) = delete;
|
|
|
|
memblock_stack& operator=(memblock_stack&& other) noexcept
|
|
{
|
|
head = other.head;
|
|
other.head = nullptr;
|
|
return *this;
|
|
}
|
|
|
|
void push(uint8_t* block) noexcept
|
|
{
|
|
// printf("head: %ld\n", (long)head);
|
|
node* next = ::new (block) node(head);
|
|
head = next;
|
|
count++;
|
|
}
|
|
|
|
uint8_t* try_pop() noexcept
|
|
{
|
|
if (is_empty()) {
|
|
return nullptr;
|
|
}
|
|
node* last_head = head;
|
|
head = head->prev;
|
|
count--;
|
|
return (uint8_t*)last_head;
|
|
}
|
|
|
|
bool is_empty() const { return head == nullptr; }
|
|
|
|
size_t size() const { return count; }
|
|
|
|
void clear() { head = nullptr; }
|
|
|
|
private:
|
|
node* head = nullptr;
|
|
size_t count = 0;
|
|
};
|
|
|
|
/// memblock stack that mutexes pushing/popping
|
|
class mutexed_memblock_stack
|
|
{
|
|
public:
|
|
mutexed_memblock_stack() = default;
|
|
|
|
mutexed_memblock_stack(const mutexed_memblock_stack&) = delete;
|
|
|
|
mutexed_memblock_stack(mutexed_memblock_stack&& other) noexcept
|
|
{
|
|
std::unique_lock<std::mutex> lk1(other.mutex, std::defer_lock);
|
|
std::unique_lock<std::mutex> lk2(mutex, std::defer_lock);
|
|
std::lock(lk1, lk2);
|
|
stack = std::move(other.stack);
|
|
}
|
|
|
|
mutexed_memblock_stack& operator=(const mutexed_memblock_stack&) = delete;
|
|
|
|
mutexed_memblock_stack& operator=(mutexed_memblock_stack&& other) noexcept
|
|
{
|
|
std::unique_lock<std::mutex> lk1(other.mutex, std::defer_lock);
|
|
std::unique_lock<std::mutex> lk2(mutex, std::defer_lock);
|
|
std::lock(lk1, lk2);
|
|
stack = std::move(other.stack);
|
|
return *this;
|
|
}
|
|
|
|
void push(uint8_t* block) noexcept
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
stack.push(block);
|
|
}
|
|
|
|
uint8_t* try_pop() noexcept
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
uint8_t* block = stack.try_pop();
|
|
return block;
|
|
}
|
|
|
|
bool is_empty() const noexcept { return stack.is_empty(); }
|
|
|
|
size_t size() const noexcept
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
return stack.size();
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
stack.clear();
|
|
}
|
|
|
|
private:
|
|
memblock_stack stack;
|
|
mutable std::mutex mutex;
|
|
};
|
|
|
|
/**
|
|
* Pool specialized for big objects. Created objects are not contiguous in memory.
|
|
* Relevant methods:
|
|
* - ::allocate_node(sz) - allocate memory of sizeof(T), or reuse memory already present in cache
|
|
* - ::deallocate_node(void* p) - return memory addressed by p back to the pool to be cached.
|
|
* - ::reserve(N) - prereserve memory slots for faster object creation
|
|
* @tparam ObjSize object memory size
|
|
* @tparam ThreadSafe if object pool is thread-safe or not
|
|
*/
|
|
template <typename T, bool ThreadSafe = false>
|
|
class big_obj_pool
|
|
{
|
|
// memory stack type derivation (thread safe or not)
|
|
using stack_type = typename std::conditional<ThreadSafe, mutexed_memblock_stack, memblock_stack>::type;
|
|
|
|
// memory stack to cache allocate memory chunks
|
|
stack_type stack;
|
|
|
|
public:
|
|
~big_obj_pool() { clear(); }
|
|
|
|
/// alloc new object space. If no memory is pre-reserved in the pool, malloc is called.
|
|
void* allocate_node(size_t sz)
|
|
{
|
|
assert(sz == sizeof(T));
|
|
static const size_t blocksize = std::max(sizeof(T), memblock_stack::min_memblock_size());
|
|
uint8_t* block = stack.try_pop();
|
|
if (block == nullptr) {
|
|
block = new uint8_t[blocksize];
|
|
}
|
|
return block;
|
|
}
|
|
|
|
void deallocate_node(void* p)
|
|
{
|
|
if (p != nullptr) {
|
|
stack.push(static_cast<uint8_t*>(p));
|
|
}
|
|
}
|
|
|
|
/// Pre-reserve N memory chunks for future object allocations
|
|
void reserve(size_t N)
|
|
{
|
|
static const size_t blocksize = std::max(sizeof(T), memblock_stack::min_memblock_size());
|
|
for (size_t i = 0; i < N; ++i) {
|
|
stack.push(new uint8_t[blocksize]);
|
|
}
|
|
}
|
|
|
|
size_t capacity() const { return stack.size(); }
|
|
|
|
void clear()
|
|
{
|
|
uint8_t* block = stack.try_pop();
|
|
while (block != nullptr) {
|
|
delete[] block;
|
|
block = stack.try_pop();
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Pool specialized for in allocating batches of objects in a preemptive way in a background thread to minimize latency.
|
|
* Note: Current implementation assumes that the pool object will outlive the background callbacks to allocate new
|
|
* batches
|
|
* @tparam T individual object type that is being allocated
|
|
* @tparam BatchSize number of T objects in a batch
|
|
* @tparam ThresholdSize number of T objects below which a new batch needs to be allocated
|
|
*/
|
|
template <typename T, size_t BatchSize, size_t ThresholdSize>
|
|
class background_allocator_obj_pool
|
|
{
|
|
static_assert(ThresholdSize > 0, "ThresholdSize needs to be positive");
|
|
static_assert(BatchSize > 1, "BatchSize needs to be higher than 1");
|
|
|
|
public:
|
|
background_allocator_obj_pool(bool lazy_start = false)
|
|
{
|
|
if (not lazy_start) {
|
|
allocate_batch_in_background();
|
|
}
|
|
}
|
|
background_allocator_obj_pool(background_allocator_obj_pool&&) = delete;
|
|
background_allocator_obj_pool(const background_allocator_obj_pool&) = delete;
|
|
background_allocator_obj_pool& operator=(background_allocator_obj_pool&&) = delete;
|
|
background_allocator_obj_pool& operator=(const background_allocator_obj_pool&) = delete;
|
|
~background_allocator_obj_pool()
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
batches.clear();
|
|
}
|
|
|
|
/// alloc new object space. If no memory is pre-reserved in the pool, malloc is called to allocate new batch.
|
|
void* allocate_node(size_t sz)
|
|
{
|
|
assert(sz == sizeof(T));
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
uint8_t* block = obj_cache.try_pop();
|
|
|
|
if (block != nullptr) {
|
|
// allocation successful
|
|
if (obj_cache.size() < ThresholdSize) {
|
|
get_background_workers().push_task([this]() {
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
allocate_batch_();
|
|
});
|
|
}
|
|
return block;
|
|
}
|
|
|
|
// try allocation of new batch in same thread as caller.
|
|
allocate_batch_();
|
|
return obj_cache.try_pop();
|
|
}
|
|
|
|
void deallocate_node(void* p)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
assert(p != nullptr);
|
|
if (p != nullptr) {
|
|
obj_cache.push(static_cast<uint8_t*>(p));
|
|
}
|
|
}
|
|
|
|
void allocate_batch_in_background()
|
|
{
|
|
get_background_workers().push_task([this]() {
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
allocate_batch_();
|
|
});
|
|
}
|
|
|
|
private:
|
|
using obj_storage_t = typename std::aligned_storage<sizeof(T), alignof(T)>::type;
|
|
using batch_obj_t = std::array<obj_storage_t, BatchSize>;
|
|
|
|
/// Unprotected allocation of new Batch of Objects
|
|
void allocate_batch_()
|
|
{
|
|
batches.emplace_back(new batch_obj_t());
|
|
batch_obj_t& batch = *batches.back();
|
|
for (obj_storage_t& obj_store : batch) {
|
|
obj_cache.push(reinterpret_cast<uint8_t*>(&obj_store));
|
|
}
|
|
}
|
|
|
|
// memory stack to cache allocate memory chunks
|
|
std::mutex mutex;
|
|
memblock_stack obj_cache;
|
|
std::vector<std::unique_ptr<batch_obj_t> > batches;
|
|
};
|
|
|
|
} // namespace srslte
|
|
|
|
#endif // SRSLTE_MEM_POOL_H
|