You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

441 lines
13 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/adt/move_callback.h"
#include "srslte/common/multiqueue.h"
#include "srslte/common/thread_pool.h"
#include <iostream>
#include <thread>
#include <unistd.h>
#define TESTASSERT(cond) \
{ \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return -1; \
} \
}
using namespace srslte;
int test_multiqueue()
{
std::cout << "\n======= TEST multiqueue test: start =======\n";
int number = 2;
multiqueue_handler<int> multiqueue;
TESTASSERT(multiqueue.nof_queues() == 0)
// test push/pop and size for one queue
int qid1 = multiqueue.add_queue();
TESTASSERT(qid1 == 0 and multiqueue.is_queue_active(qid1))
TESTASSERT(multiqueue.size(qid1) == 0 and multiqueue.empty(qid1))
TESTASSERT(multiqueue.nof_queues() == 1)
TESTASSERT(multiqueue.try_push(qid1, 5).first)
TESTASSERT(multiqueue.try_push(qid1, number))
TESTASSERT(multiqueue.size(qid1) == 2 and not multiqueue.empty(qid1))
TESTASSERT(multiqueue.wait_pop(&number) == qid1)
TESTASSERT(number == 5)
TESTASSERT(multiqueue.wait_pop(&number) == qid1)
TESTASSERT(number == 2 and multiqueue.empty(qid1) and multiqueue.size(qid1) == 0)
// test push/pop and size for two queues
int qid2 = multiqueue.add_queue();
TESTASSERT(qid2 == 1)
TESTASSERT(multiqueue.nof_queues() == 2 and multiqueue.is_queue_active(qid1))
TESTASSERT(multiqueue.try_push(qid2, 3).first)
TESTASSERT(multiqueue.size(qid2) == 1 and not multiqueue.empty(qid2))
TESTASSERT(multiqueue.empty(qid1) and multiqueue.size(qid1) == 0)
// check if erasing a queue breaks anything
multiqueue.erase_queue(qid1);
TESTASSERT(multiqueue.nof_queues() == 1 and not multiqueue.is_queue_active(qid1))
qid1 = multiqueue.add_queue();
TESTASSERT(qid1 == 0)
TESTASSERT(multiqueue.empty(qid1) and multiqueue.is_queue_active(qid1))
multiqueue.wait_pop(&number);
// check round-robin
for (int i = 0; i < 10; ++i) {
TESTASSERT(multiqueue.try_push(qid1, i))
}
for (int i = 20; i < 35; ++i) {
TESTASSERT(multiqueue.try_push(qid2, i))
}
TESTASSERT(multiqueue.size(qid1) == 10)
TESTASSERT(multiqueue.size(qid2) == 15)
TESTASSERT(multiqueue.wait_pop(&number) == qid1 and number == 0)
TESTASSERT(multiqueue.wait_pop(&number) == qid2 and number == 20)
TESTASSERT(multiqueue.wait_pop(&number) == qid1 and number == 1)
TESTASSERT(multiqueue.wait_pop(&number) == qid2 and number == 21)
TESTASSERT(multiqueue.size(qid1) == 8)
TESTASSERT(multiqueue.size(qid2) == 13)
for (int i = 0; i < 8 * 2; ++i) {
multiqueue.wait_pop(&number);
}
TESTASSERT(multiqueue.size(qid1) == 0)
TESTASSERT(multiqueue.size(qid2) == 5)
TESTASSERT(multiqueue.wait_pop(&number) == qid2 and number == 30)
// remove existing queues
multiqueue.erase_queue(qid1);
multiqueue.erase_queue(qid2);
TESTASSERT(multiqueue.nof_queues() == 0)
// check that adding a queue of different capacity works
{
int qid1 = multiqueue.add_queue();
int qid2 = multiqueue.add_queue();
// remove first queue again
multiqueue.erase_queue(qid1);
TESTASSERT(multiqueue.nof_queues() == 1)
// add queue with non-default capacity
int qid3 = multiqueue.add_queue(10);
// make sure neither a new queue index is returned
TESTASSERT(qid1 != qid3)
TESTASSERT(qid2 != qid3)
}
std::cout << "outcome: Success\n";
std::cout << "===========================================\n";
return 0;
}
int test_multiqueue_threading()
{
std::cout << "\n===== TEST multiqueue threading test: start =====\n";
int capacity = 4, number = 0, start_number = 2, nof_pushes = capacity + 1;
multiqueue_handler<int> multiqueue(capacity);
int qid1 = multiqueue.add_queue();
auto push_blocking_func = [&multiqueue](int qid, int start_value, int nof_pushes, bool* is_running) {
for (int i = 0; i < nof_pushes; ++i) {
multiqueue.push(qid, start_value + i);
std::cout << "t1: pushed item " << i << std::endl;
}
std::cout << "t1: pushed all items\n";
*is_running = false;
};
bool t1_running = true;
std::thread t1(push_blocking_func, qid1, start_number, nof_pushes, &t1_running);
// Wait for queue to fill
while ((int)multiqueue.size(qid1) != capacity) {
usleep(1000);
TESTASSERT(t1_running)
}
for (int i = 0; i < nof_pushes; ++i) {
TESTASSERT(multiqueue.wait_pop(&number) == qid1)
TESTASSERT(number == start_number + i)
std::cout << "main: popped item " << i << "\n";
}
std::cout << "main: popped all items\n";
// wait for thread to finish
while (t1_running) {
usleep(1000);
}
TESTASSERT(multiqueue.size(qid1) == 0)
multiqueue.reset();
t1.join();
std::cout << "outcome: Success\n";
std::cout << "==================================================\n";
return 0;
}
int test_multiqueue_threading2()
{
std::cout << "\n===== TEST multiqueue threading test 2: start =====\n";
// Description: push items until blocking in thread t1. Unblocks in main thread by calling multiqueue.reset()
int capacity = 4, start_number = 2, nof_pushes = capacity + 1;
multiqueue_handler<int> multiqueue(capacity);
int qid1 = multiqueue.add_queue();
auto push_blocking_func = [&multiqueue](int qid, int start_value, int nof_pushes, bool* is_running) {
for (int i = 0; i < nof_pushes; ++i) {
multiqueue.push(qid, start_value + i);
}
std::cout << "t1: pushed all items\n";
*is_running = false;
};
bool t1_running = true;
std::thread t1(push_blocking_func, qid1, start_number, nof_pushes, &t1_running);
// Wait for queue to fill
while ((int)multiqueue.size(qid1) != capacity) {
usleep(1000);
TESTASSERT(t1_running)
}
multiqueue.reset();
t1.join();
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_multiqueue_threading3()
{
std::cout << "\n===== TEST multiqueue threading test 3: start =====\n";
// pop will block in a separate thread, but multiqueue.reset() will unlock it
int capacity = 4;
multiqueue_handler<int> multiqueue(capacity);
int qid1 = multiqueue.add_queue();
auto pop_blocking_func = [&multiqueue](int qid, bool* success) {
int number = 0;
int id = multiqueue.wait_pop(&number);
*success = id < 0;
};
bool t1_success = false;
std::thread t1(pop_blocking_func, qid1, &t1_success);
TESTASSERT(not t1_success)
usleep(1000);
TESTASSERT(not t1_success)
TESTASSERT((int)multiqueue.size(qid1) == 0)
// Should be able to unlock all
multiqueue.reset();
t1.join();
TESTASSERT(t1_success);
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_task_thread_pool()
{
std::cout << "\n====== TEST task thread pool test 1: start ======\n";
// Description: check whether the tasks are successfully distributed between workers
uint32_t nof_workers = 4, nof_runs = 10000;
std::vector<int> count_worker(nof_workers, 0);
std::vector<std::mutex> count_mutex(nof_workers);
task_thread_pool thread_pool(nof_workers);
thread_pool.start();
auto task = [&count_worker, &count_mutex](uint32_t worker_id) {
std::lock_guard<std::mutex> lock(count_mutex[worker_id]);
// std::cout << "hello world from worker " << worker_id << std::endl;
count_worker[worker_id]++;
};
for (uint32_t i = 0; i < nof_runs; ++i) {
thread_pool.push_task(task);
}
// wait for all tasks to be successfully processed
while (thread_pool.nof_pending_tasks() > 0) {
usleep(100);
}
thread_pool.stop();
uint32_t total_count = 0;
for (uint32_t i = 0; i < nof_workers; ++i) {
if (count_worker[i] < 10) {
printf("WARNING: the number of tasks %d assigned to worker %d is too low\n", count_worker[i], i);
}
total_count += count_worker[i];
printf("worker %d: %d runs\n", i, count_worker[i]);
}
if (total_count != nof_runs) {
printf("Number of task runs=%d does not match total=%d\n", total_count, nof_runs);
return -1;
}
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_task_thread_pool2()
{
std::cout << "\n====== TEST task thread pool test 2: start ======\n";
// Description: push a very long task to all workers, and call thread_pool.stop() to check if it waits for the tasks
// to be completed, and does not get stuck.
uint32_t nof_workers = 4;
uint8_t workers_started = 0, workers_finished = 0;
std::mutex mut;
task_thread_pool thread_pool(nof_workers);
thread_pool.start();
auto task = [&workers_started, &workers_finished, &mut](uint32_t worker_id) {
{
std::lock_guard<std::mutex> lock(mut);
workers_started++;
}
sleep(1);
std::lock_guard<std::mutex> lock(mut);
std::cout << "worker " << worker_id << " has finished\n";
workers_finished++;
};
for (uint32_t i = 0; i < nof_workers; ++i) {
thread_pool.push_task(task);
}
while (workers_started != nof_workers) {
usleep(10);
}
std::cout << "stopping thread pool...\n";
thread_pool.stop();
std::cout << "thread pool stopped.\n";
TESTASSERT(workers_finished == nof_workers);
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
int test_task_thread_pool3()
{
std::cout << "\n====== TEST task thread pool test 3: start ======\n";
// Description: create many workers and shut down the pool before all of them started yet. Should exit cleanly
uint32_t nof_workers = 100;
task_thread_pool thread_pool(nof_workers);
thread_pool.start();
std::cout << "outcome: Success\n";
std::cout << "===================================================\n";
return 0;
}
struct C {
std::unique_ptr<int> val{new int{5}};
};
struct D {
std::array<int, 64> big_val;
D() { big_val[0] = 6; }
};
int test_inplace_task()
{
std::cout << "\n======= TEST inplace task: start =======\n";
int v = 0;
auto l0 = [&v]() { v = 1; };
srslte::move_callback<void()> t{l0};
srslte::move_callback<void()> t2{[v]() mutable { v = 2; }};
// sanity static checks
static_assert(task_details::is_move_callback<std::decay<decltype(t)>::type>::value, "failed check\n");
static_assert(
std::is_base_of<std::false_type, task_details::is_move_callback<std::decay<decltype(l0)>::type> >::value,
"failed check\n");
t();
t2();
TESTASSERT(v == 1);
v = 2;
decltype(t) t3 = std::move(t);
t3();
TESTASSERT(v == 1);
C c;
srslte::move_callback<void()> t4{std::bind([&v](C& c) { v = *c.val; }, std::move(c))};
{
decltype(t4) t5;
t5 = std::move(t4);
t5();
TESTASSERT(v == 5);
}
D d;
srslte::move_callback<void()> t6 = [&v, d]() { v = d.big_val[0]; };
{
srslte::move_callback<void()> t7;
t6();
TESTASSERT(v == 6);
v = 0;
t7 = std::move(t6);
t7();
TESTASSERT(v == 6);
}
auto l1 = std::bind([&v](C& c) { v = *c.val; }, C{});
auto l2 = [&v, d]() { v = d.big_val[0]; };
t = std::move(l1);
t2 = l2;
v = 0;
t();
TESTASSERT(v == 5);
t2();
TESTASSERT(v == 6);
TESTASSERT(t.is_in_small_buffer() and not t2.is_in_small_buffer());
std::swap(t, t2);
TESTASSERT(t2.is_in_small_buffer() and not t.is_in_small_buffer());
v = 0;
t();
TESTASSERT(v == 6);
t2();
TESTASSERT(v == 5);
// TEST: task works in const contexts
t = l2;
auto l3 = [](const srslte::move_callback<void()>& task) { task(); };
v = 0;
l3(t);
TESTASSERT(v == 6);
std::cout << "outcome: Success\n";
std::cout << "========================================\n";
return 0;
}
int main()
{
TESTASSERT(test_multiqueue() == 0);
TESTASSERT(test_multiqueue_threading() == 0);
TESTASSERT(test_multiqueue_threading2() == 0);
TESTASSERT(test_multiqueue_threading3() == 0);
TESTASSERT(test_task_thread_pool() == 0);
TESTASSERT(test_task_thread_pool2() == 0);
TESTASSERT(test_task_thread_pool3() == 0);
TESTASSERT(test_inplace_task() == 0);
}