You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

948 lines
29 KiB
C

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <pthread.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include "rf_helper.h"
#include "rf_soapy_imp.h"
#include "srslte/srslte.h"
#include <SoapySDR/Device.h>
#include <SoapySDR/Formats.h>
#include <SoapySDR/Logger.h>
#include <SoapySDR/Time.h>
#include <Types.h>
#define HAVE_ASYNC_THREAD 1
#define USE_TX_MTU 0
#define SET_RF_BW 1
#define PRINT_RX_STATS 0
#define PRINT_TX_STATS 0
typedef struct {
char* devname;
SoapySDRKwargs args;
SoapySDRDevice* device;
SoapySDRRange* ranges;
SoapySDRStream* rxStream;
SoapySDRStream* txStream;
bool tx_stream_active;
bool rx_stream_active;
srslte_rf_info_t info;
double tx_rate;
double master_clock_rate;
size_t rx_mtu, tx_mtu;
size_t num_rx_channels;
size_t num_tx_channels;
srslte_rf_error_handler_t soapy_error_handler;
bool async_thread_running;
pthread_t async_thread;
uint32_t num_time_errors;
uint32_t num_lates;
uint32_t num_overflows;
uint32_t num_underflows;
uint32_t num_other_errors;
uint32_t num_stream_curruption;
} rf_soapy_handler_t;
cf_t zero_mem[64 * 1024];
static void log_overflow(rf_soapy_handler_t* h)
{
if (h->soapy_error_handler) {
srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t));
error.type = SRSLTE_RF_ERROR_OVERFLOW;
h->soapy_error_handler(error);
} else {
h->num_overflows++;
}
}
static void log_late(rf_soapy_handler_t* h, bool is_rx)
{
if (h->soapy_error_handler) {
srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t));
error.opt = is_rx ? 1 : 0;
error.type = SRSLTE_RF_ERROR_LATE;
h->soapy_error_handler(error);
} else {
h->num_lates++;
}
}
static void log_underflow(rf_soapy_handler_t* h)
{
if (h->soapy_error_handler) {
srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t));
error.type = SRSLTE_RF_ERROR_UNDERFLOW;
h->soapy_error_handler(error);
} else {
h->num_underflows++;
}
}
#if HAVE_ASYNC_THREAD
static void* async_thread(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
while (handler->async_thread_running) {
int ret = 0;
size_t chanMask = 0;
int flags = 0;
const long timeoutUs = 400000; // arbitrarily chosen
long long timeNs;
ret = SoapySDRDevice_readStreamStatus(handler->device, handler->txStream, &chanMask, &flags, &timeNs, timeoutUs);
if (ret == SOAPY_SDR_TIME_ERROR) {
// this is a late
log_late(handler, false);
} else if (ret == SOAPY_SDR_UNDERFLOW) {
log_underflow(handler);
} else if (ret == SOAPY_SDR_OVERFLOW) {
log_overflow(handler);
} else if (ret == SOAPY_SDR_TIMEOUT) {
// this is a timeout of the readStreamStatus call, ignoring it ..
} else if (ret == SOAPY_SDR_NOT_SUPPORTED) {
// stopping async thread
ERROR("Receiving async metadata not supported by device. Exiting thread.\n");
handler->async_thread_running = false;
} else {
ERROR("Error while receiving aync metadata: %s (%d), flags=%d, channel=%zu, timeNs=%lld\n",
SoapySDR_errToStr(ret),
ret,
flags,
chanMask,
timeNs);
handler->async_thread_running = false;
}
}
return NULL;
}
#endif
int soapy_error(void* h)
{
return 0;
}
void rf_soapy_get_freq_range(void* h)
{
// not supported
}
void rf_soapy_suppress_handler(const char* x)
{
// not supported
}
void rf_soapy_msg_handler(const char* msg)
{
// not supported
}
void rf_soapy_suppress_stdout(void* h)
{
// not supported
}
void rf_soapy_register_error_handler(void* h, srslte_rf_error_handler_t new_handler)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
handler->soapy_error_handler = new_handler;
}
const char* rf_soapy_devname(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
return handler->devname;
}
static bool rf_soapy_rx_wait_lo_locked(rf_soapy_handler_t* handler)
{
char* ret = SoapySDRDevice_readChannelSensor(handler->device, SOAPY_SDR_RX, 0, "lo_locked");
if (ret != NULL) {
return (strcmp(ret, "true") == 0 ? true : false);
}
return true;
}
void rf_soapy_calibrate_tx(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
double actual_bw = SoapySDRDevice_getBandwidth(handler->device, SOAPY_SDR_TX, 0);
char str_buf[25];
snprintf(str_buf, sizeof(str_buf), "%f", actual_bw);
str_buf[24] = 0;
SoapySDRDevice_writeSetting(handler->device, "CALIBRATE_TX", str_buf);
}
int rf_soapy_start_rx_stream(void* h, bool now)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
if (handler->rx_stream_active == false) {
if (SoapySDRDevice_activateStream(handler->device, handler->rxStream, 0, 0, 0) != 0) {
printf("Error starting Rx streaming.\n");
return SRSLTE_ERROR;
}
handler->rx_stream_active = true;
}
return SRSLTE_SUCCESS;
}
int rf_soapy_start_tx_stream(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
if (handler->tx_stream_active == false) {
if (SoapySDRDevice_activateStream(handler->device, handler->txStream, 0, 0, 0) != 0)
return SRSLTE_ERROR;
handler->tx_stream_active = true;
}
return SRSLTE_SUCCESS;
}
int rf_soapy_stop_rx_stream(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
if (SoapySDRDevice_deactivateStream(handler->device, handler->rxStream, 0, 0) != 0)
return SRSLTE_ERROR;
handler->rx_stream_active = false;
return SRSLTE_SUCCESS;
}
int rf_soapy_stop_tx_stream(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
if (SoapySDRDevice_deactivateStream(handler->device, handler->txStream, 0, 0) != 0)
return SRSLTE_ERROR;
handler->tx_stream_active = false;
return SRSLTE_SUCCESS;
}
void rf_soapy_flush_buffer(void* h)
{
int n;
cf_t tmp1[1024];
cf_t tmp2[1024];
void* data[2] = {tmp1, tmp2};
do {
n = rf_soapy_recv_with_time_multi(h, data, 1024, 0, NULL, NULL);
} while (n > 0);
}
bool rf_soapy_has_rssi(void* h)
{
// TODO: implement rf_soapy_has_rssi()
return false;
}
float rf_soapy_get_rssi(void* h)
{
printf("TODO: implement rf_soapy_get_rssi()\n");
return 0.0;
}
int rf_soapy_open_multi(char* args, void** h, uint32_t num_requested_channels)
{
size_t length;
SoapySDRKwargs* soapy_args = SoapySDRDevice_enumerate(NULL, &length);
if (length == 0) {
printf("No Soapy devices found.\n");
SoapySDRKwargsList_clear(soapy_args, length);
return SRSLTE_ERROR;
}
char* devname = DEVNAME_NONE;
for (size_t i = 0; i < length; i++) {
printf("Soapy has found device #%d: ", (int)i);
for (size_t j = 0; j < soapy_args[i].size; j++) {
printf("%s=%s, ", soapy_args[i].keys[j], soapy_args[i].vals[j]);
if (!strcmp(soapy_args[i].keys[j], "name") && !strcmp(soapy_args[i].vals[j], "LimeSDR-USB")) {
devname = DEVNAME_LIME;
} else if (!strcmp(soapy_args[i].keys[j], "name") && !strcmp(soapy_args[i].vals[j], "LimeSDR Mini")) {
devname = DEVNAME_LIME_MINI;
}
}
printf("\n");
}
// Select Soapy device by id
const char dev_arg[] = "id=";
char* dev_ptr = strstr(args, dev_arg);
int dev_id = 0;
if (dev_ptr) {
char dev_str[64] = {0};
copy_subdev_string(dev_str, dev_ptr + strnlen(dev_arg, 64));
printf("Selecting Soapy device: %s\n", dev_str);
dev_id = strtol(dev_str, NULL, 0);
if (dev_id < 0 || dev_id > 10) {
ERROR("Failed to set device. Using 0 as default.\n");
dev_id = 0;
}
remove_substring(args, dev_arg);
remove_substring(args, dev_str);
}
SoapySDRDevice* sdr = SoapySDRDevice_make(&(soapy_args[dev_id]));
if (sdr == NULL) {
printf("Failed to create Soapy object\n");
return SRSLTE_ERROR;
}
SoapySDRKwargsList_clear(soapy_args, length);
// create handler
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)malloc(sizeof(rf_soapy_handler_t));
bzero(handler, sizeof(rf_soapy_handler_t));
*h = handler;
handler->device = sdr;
handler->tx_stream_active = false;
handler->rx_stream_active = false;
handler->devname = devname;
// Setup Rx streamer
size_t num_available_channels = SoapySDRDevice_getNumChannels(handler->device, SOAPY_SDR_RX);
if ((num_available_channels > 0) && (num_requested_channels > 0)) {
handler->num_rx_channels = SRSLTE_MIN(num_available_channels, num_requested_channels);
size_t rx_channels[handler->num_rx_channels];
for (int i = 0; i < handler->num_rx_channels; i++) {
rx_channels[i] = i;
}
printf("Setting up Rx stream with %zd channel(s)\n", handler->num_rx_channels);
if (SoapySDRDevice_setupStream(handler->device,
&handler->rxStream,
SOAPY_SDR_RX,
SOAPY_SDR_CF32,
rx_channels,
handler->num_rx_channels,
NULL) != 0) {
printf("Rx setupStream fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
handler->rx_mtu = SoapySDRDevice_getStreamMTU(handler->device, handler->rxStream);
}
// Setup Tx streamer
num_available_channels = SoapySDRDevice_getNumChannels(handler->device, SOAPY_SDR_TX);
if ((num_available_channels > 0) && (num_requested_channels > 0)) {
handler->num_tx_channels = SRSLTE_MIN(num_available_channels, num_requested_channels);
size_t tx_channels[handler->num_tx_channels];
for (int i = 0; i < handler->num_tx_channels; i++) {
tx_channels[i] = i;
}
printf("Setting up Tx stream with %zd channel(s)\n", handler->num_tx_channels);
if (SoapySDRDevice_setupStream(handler->device,
&handler->txStream,
SOAPY_SDR_TX,
SOAPY_SDR_CF32,
tx_channels,
handler->num_tx_channels,
NULL) != 0) {
printf("Tx setupStream fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
handler->tx_mtu = SoapySDRDevice_getStreamMTU(handler->device, handler->txStream);
}
// init rx/tx rate to lowest LTE rate to avoid decimation warnings
rf_soapy_set_rx_srate(handler, 1.92e6);
rf_soapy_set_tx_srate(handler, 1.92e6);
// list device sensors
size_t list_length;
char** list;
list = SoapySDRDevice_listSensors(handler->device, &list_length);
printf("Available device sensors: \n");
for (int i = 0; i < list_length; i++) {
printf(" - %s\n", list[i]);
}
// list channel sensors
for (uint32_t i = 0; i < handler->num_rx_channels; ++i) {
list = SoapySDRDevice_listChannelSensors(handler->device, SOAPY_SDR_RX, i, &list_length);
printf("Available sensors for Rx channel %d: \n", i);
for (int j = 0; j < list_length; j++) {
printf(" - %s\n", list[j]);
}
}
// Set static radio info
SoapySDRRange tx_range = SoapySDRDevice_getGainRange(handler->device, SOAPY_SDR_TX, 0);
SoapySDRRange rx_range = SoapySDRDevice_getGainRange(handler->device, SOAPY_SDR_RX, 0);
handler->info.min_tx_gain = tx_range.minimum;
handler->info.max_tx_gain = tx_range.maximum;
handler->info.min_rx_gain = rx_range.minimum;
handler->info.max_rx_gain = rx_range.maximum;
// Check device arguments
if (args) {
// config file
const char config_arg[] = "config=";
char config_str[64] = {0};
char* config_ptr = strstr(args, config_arg);
if (config_ptr) {
copy_subdev_string(config_str, config_ptr + strlen(config_arg));
printf("Loading config file %s\n", config_str);
SoapySDRDevice_writeSetting(handler->device, "LOAD_CONFIG", config_str);
remove_substring(args, config_arg);
remove_substring(args, config_str);
}
// rx antenna
const char rx_ant_arg[] = "rxant=";
char rx_ant_str[64] = {0};
char* rx_ant_ptr = strstr(args, rx_ant_arg);
if (rx_ant_ptr) {
copy_subdev_string(rx_ant_str, rx_ant_ptr + strlen(rx_ant_arg));
printf("Setting Rx antenna to %s\n", rx_ant_str);
if (SoapySDRDevice_setAntenna(handler->device, SOAPY_SDR_RX, 0, rx_ant_str) != 0) {
ERROR("Failed to set Rx antenna.\n");
}
remove_substring(args, rx_ant_arg);
remove_substring(args, rx_ant_str);
}
// tx antenna
const char tx_ant_arg[] = "txant=";
char tx_ant_str[64] = {0};
char* tx_ant_ptr = strstr(args, tx_ant_arg);
if (tx_ant_ptr) {
copy_subdev_string(tx_ant_str, tx_ant_ptr + strlen(tx_ant_arg));
printf("Setting Tx antenna to %s\n", tx_ant_str);
if (SoapySDRDevice_setAntenna(handler->device, SOAPY_SDR_TX, 0, tx_ant_str) != 0) {
ERROR("Failed to set Tx antenna.\n");
}
remove_substring(args, tx_ant_arg);
remove_substring(args, tx_ant_str);
}
// log level
const char loglevel_arg[] = "loglevel=";
char loglevel_str[64] = {0};
char* loglevel_ptr = strstr(args, loglevel_arg);
if (loglevel_ptr) {
copy_subdev_string(loglevel_str, loglevel_ptr + strlen(loglevel_arg));
if (strcmp(loglevel_str, "error") == 0) {
SoapySDR_setLogLevel(SOAPY_SDR_ERROR);
}
remove_substring(args, loglevel_arg);
remove_substring(args, loglevel_str);
}
}
#if HAVE_ASYNC_THREAD
bool start_async_thread = true;
if (args) {
if (strstr(args, "silent")) {
REMOVE_SUBSTRING_WITHCOMAS(args, "silent");
start_async_thread = false;
}
}
#endif
// receive one subframe to allow for transceiver calibration
if (strstr(devname, "lime")) {
// set default tx gain and leave some time to calibrate tx
rf_soapy_set_tx_gain(handler, 45);
rf_soapy_set_rx_gain(handler, 35);
cf_t dummy_buffer[1920];
cf_t* dummy_buffer_array[SRSLTE_MAX_PORTS];
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
dummy_buffer_array[i] = dummy_buffer;
}
rf_soapy_start_rx_stream(handler, true);
rf_soapy_recv_with_time_multi(handler, (void**)dummy_buffer_array, 1920, false, NULL, NULL);
rf_soapy_stop_rx_stream(handler);
usleep(10000);
}
// list gains and AGC mode
bool has_agc = SoapySDRDevice_hasGainMode(handler->device, SOAPY_SDR_RX, 0);
list = SoapySDRDevice_listGains(handler->device, SOAPY_SDR_RX, 0, &list_length);
printf("State of gain elements for Rx channel 0 (AGC %s):\n", has_agc ? "supported" : "not supported");
for (int i = 0; i < list_length; i++) {
printf(" - %s: %.2f dB\n", list[i], SoapySDRDevice_getGainElement(handler->device, SOAPY_SDR_RX, 0, list[i]));
}
has_agc = SoapySDRDevice_hasGainMode(handler->device, SOAPY_SDR_TX, 0);
list = SoapySDRDevice_listGains(handler->device, SOAPY_SDR_TX, 0, &list_length);
printf("State of gain elements for Tx channel 0 (AGC %s):\n", has_agc ? "supported" : "not supported");
for (int i = 0; i < list_length; i++) {
printf(" - %s: %.2f dB\n", list[i], SoapySDRDevice_getGainElement(handler->device, SOAPY_SDR_TX, 0, list[i]));
}
// print actual antenna configuration
char* ant = SoapySDRDevice_getAntenna(handler->device, SOAPY_SDR_RX, 0);
printf("Rx antenna set to %s\n", ant);
ant = SoapySDRDevice_getAntenna(handler->device, SOAPY_SDR_TX, 0);
printf("Tx antenna set to %s\n", ant);
#if HAVE_ASYNC_THREAD
if (start_async_thread) {
// Start low priority thread to receive async commands
handler->async_thread_running = true;
if (pthread_create(&handler->async_thread, NULL, async_thread, handler)) {
perror("pthread_create");
return -1;
}
}
#endif
return SRSLTE_SUCCESS;
}
int rf_soapy_open(char* args, void** h)
{
return rf_soapy_open_multi(args, h, 1);
}
int rf_soapy_close(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
#if HAVE_ASYNC_THREAD
if (handler->async_thread_running) {
handler->async_thread_running = false;
pthread_join(handler->async_thread, NULL);
}
#endif
if (handler->tx_stream_active) {
rf_soapy_stop_tx_stream(handler);
SoapySDRDevice_closeStream(handler->device, handler->txStream);
}
if (handler->rx_stream_active) {
rf_soapy_stop_rx_stream(handler);
SoapySDRDevice_closeStream(handler->device, handler->rxStream);
}
SoapySDRDevice_unmake(handler->device);
// print statistics
if (handler->num_lates)
printf("#lates=%d\n", handler->num_lates);
if (handler->num_overflows)
printf("#overflows=%d\n", handler->num_overflows);
if (handler->num_underflows)
printf("#underflows=%d\n", handler->num_underflows);
if (handler->num_time_errors)
printf("#time_errors=%d\n", handler->num_time_errors);
if (handler->num_other_errors)
printf("#other_errors=%d\n", handler->num_other_errors);
free(handler);
return SRSLTE_SUCCESS;
}
double rf_soapy_set_rx_srate(void* h, double rate)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
// Restart streaming, as the Lime seems to have problems reconfiguring the sample rate during streaming
bool rx_stream_active = handler->rx_stream_active;
if (rx_stream_active) {
rf_soapy_stop_rx_stream(handler);
}
for (uint32_t i = 0; i < handler->num_rx_channels; i++) {
if (SoapySDRDevice_setSampleRate(handler->device, SOAPY_SDR_RX, i, rate) != 0) {
printf("setSampleRate Rx fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
#if SET_RF_BW
// Set bandwidth close to current rate
size_t bw_length;
SoapySDRRange* bw_range = SoapySDRDevice_getBandwidthRange(handler->device, SOAPY_SDR_RX, 0, &bw_length);
for (int k = 0; k < bw_length; ++k) {
double bw = rate * 0.75;
bw = SRSLTE_MIN(bw, bw_range[k].maximum);
bw = SRSLTE_MAX(bw, bw_range[k].minimum);
bw = SRSLTE_MAX(bw, 2.5e6); // For the Lime to avoid warnings
if (SoapySDRDevice_setBandwidth(handler->device, SOAPY_SDR_RX, i, bw) != 0) {
printf("setBandwidth fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
printf("Set Rx bandwidth to %.2f MHz\n", SoapySDRDevice_getBandwidth(handler->device, SOAPY_SDR_RX, i) / 1e6);
}
#endif
}
if (rx_stream_active) {
rf_soapy_start_rx_stream(handler, true);
}
// retrun sample rate of first channel
return SoapySDRDevice_getSampleRate(handler->device, SOAPY_SDR_RX, 0);
}
double rf_soapy_set_tx_srate(void* h, double rate)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
// stop/start streaming during rate reconfiguration
bool rx_stream_active = handler->rx_stream_active;
if (handler->rx_stream_active) {
rf_soapy_stop_rx_stream(handler);
}
for (uint32_t i = 0; i < handler->num_tx_channels; i++) {
if (SoapySDRDevice_setSampleRate(handler->device, SOAPY_SDR_TX, i, rate) != 0) {
printf("setSampleRate Tx fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
#if SET_RF_BW
size_t bw_length;
SoapySDRRange* bw_range = SoapySDRDevice_getBandwidthRange(handler->device, SOAPY_SDR_TX, i, &bw_length);
for (int k = 0; k < bw_length; ++k) {
// try to set the BW a bit narrower than sampling rate to prevent aliasing but make sure to stay within device
// boundaries
double bw = rate * 0.75;
bw = SRSLTE_MAX(bw, bw_range[k].minimum);
bw = SRSLTE_MIN(bw, bw_range[k].maximum);
if (SoapySDRDevice_setBandwidth(handler->device, SOAPY_SDR_TX, i, bw) != 0) {
printf("setBandwidth fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
printf("Set Tx bandwidth to %.2f MHz\n", SoapySDRDevice_getBandwidth(handler->device, SOAPY_SDR_TX, i) / 1e6);
}
#endif
}
if (rx_stream_active) {
rf_soapy_start_rx_stream(handler, true);
}
handler->tx_rate = SoapySDRDevice_getSampleRate(handler->device, SOAPY_SDR_TX, 0);
return handler->tx_rate;
}
double rf_soapy_set_rx_gain(void* h, double gain)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
for (uint32_t i = 0; i < handler->num_rx_channels; i++) {
if (SoapySDRDevice_setGain(handler->device, SOAPY_SDR_RX, i, gain) != 0) {
printf("setGain fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
}
return rf_soapy_get_rx_gain(h);
}
double rf_soapy_set_tx_gain(void* h, double gain)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
for (uint32_t i = 0; i < handler->num_tx_channels; i++) {
if (SoapySDRDevice_setGain(handler->device, SOAPY_SDR_TX, i, gain) != 0) {
printf("setGain fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
}
return rf_soapy_get_tx_gain(h);
}
// Return gain of first channel
double rf_soapy_get_rx_gain(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
return SoapySDRDevice_getGain(handler->device, SOAPY_SDR_RX, 0);
}
// Return gain of first channel
double rf_soapy_get_tx_gain(void* h)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
return SoapySDRDevice_getGain(handler->device, SOAPY_SDR_TX, 0);
}
srslte_rf_info_t* rf_soapy_get_info(void* h)
{
srslte_rf_info_t* info = NULL;
if (h) {
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
info = &handler->info;
}
return info;
}
double rf_soapy_set_rx_freq(void* h, uint32_t ch, double freq)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
for (uint32_t i = 0; i < handler->num_rx_channels; i++) {
if (SoapySDRDevice_setFrequency(handler->device, SOAPY_SDR_RX, i, freq, NULL) != 0) {
printf("setFrequency fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
}
// wait until LO is locked
rf_soapy_rx_wait_lo_locked(handler);
// Return actual frequency for channel 0
return SoapySDRDevice_getFrequency(handler->device, SOAPY_SDR_RX, 0);
}
double rf_soapy_set_tx_freq(void* h, uint32_t ch, double freq)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
for (uint32_t i = 0; i < handler->num_tx_channels; i++) {
if (SoapySDRDevice_setFrequency(handler->device, SOAPY_SDR_TX, i, freq, NULL) != 0) {
printf("setFrequency fail: %s\n", SoapySDRDevice_lastError());
return SRSLTE_ERROR;
}
}
return SoapySDRDevice_getFrequency(handler->device, SOAPY_SDR_TX, 0);
}
void rf_soapy_get_time(void* h, time_t* secs, double* frac_secs)
{
printf("Todo: implement rf_soapy_get_time()\n");
}
// TODO: add multi-channel support
int rf_soapy_recv_with_time_multi(void* h,
void* data[SRSLTE_MAX_PORTS],
uint32_t nsamples,
bool blocking,
time_t* secs,
double* frac_secs)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
int flags = 0; // flags set by receive operation
const long timeoutUs = 400000; // arbitrarily chosen
int trials = 0;
int ret = 0;
long long timeNs; // timestamp for receive buffer
int n = 0;
#if PRINT_RX_STATS
printf("rx: nsamples=%d rx_mtu=%zd\n", nsamples, handler->rx_mtu);
#endif
do {
size_t rx_samples = SRSLTE_MIN(nsamples - n, handler->rx_mtu);
#if PRINT_RX_STATS
printf(" - rx_samples=%zd\n", rx_samples);
#endif
void* buffs_ptr[SRSLTE_MAX_PORTS] = {};
for (int i = 0; i < handler->num_rx_channels; i++) {
cf_t* data_c = (cf_t*)data[i];
buffs_ptr[i] = &data_c[n];
}
ret = SoapySDRDevice_readStream(
handler->device, handler->rxStream, buffs_ptr, rx_samples, &flags, &timeNs, timeoutUs);
if (ret == SOAPY_SDR_OVERFLOW || (ret > 0 && (flags & SOAPY_SDR_END_ABRUPT) != 0)) {
log_overflow(handler);
continue;
} else if (ret == SOAPY_SDR_TIMEOUT) {
log_late(handler, true);
continue;
} else if (ret < 0) {
// unspecific error
printf("SoapySDRDevice_readStream returned %d: %s\n", ret, SoapySDR_errToStr(ret));
handler->num_other_errors++;
}
// update rx time only for first segment
if (secs != NULL && frac_secs != NULL && n == 0) {
*secs = floor(timeNs / 1e9);
*frac_secs = (timeNs % 1000000000) / 1e9;
// printf("rx_time: secs=%lld, frac_secs=%lf timeNs=%llu\n", *secs, *frac_secs, timeNs);
}
#if PRINT_RX_STATS
printf(" - rx: %d/%zd\n", ret, rx_samples);
#endif
n += ret;
trials++;
} while (n < nsamples && trials < 100);
return n;
}
int rf_soapy_recv_with_time(void* h, void* data, uint32_t nsamples, bool blocking, time_t* secs, double* frac_secs)
{
return rf_soapy_recv_with_time_multi(h, &data, nsamples, blocking, secs, frac_secs);
}
int rf_soapy_send_timed(void* h,
void* data,
int nsamples,
time_t secs,
double frac_secs,
bool has_time_spec,
bool blocking,
bool is_start_of_burst,
bool is_end_of_burst)
{
void* _data[SRSLTE_MAX_PORTS] = {data, zero_mem, zero_mem, zero_mem};
return rf_soapy_send_timed_multi(
h, _data, nsamples, secs, frac_secs, has_time_spec, blocking, is_start_of_burst, is_end_of_burst);
}
// Todo: Check correct handling of flags, use RF metrics API, fix timed transmissions
int rf_soapy_send_timed_multi(void* h,
void* data[SRSLTE_MAX_PORTS],
int nsamples,
time_t secs,
double frac_secs,
bool has_time_spec,
bool blocking,
bool is_start_of_burst,
bool is_end_of_burst)
{
rf_soapy_handler_t* handler = (rf_soapy_handler_t*)h;
int flags = 0;
const long timeoutUs = 100000; // arbitrarily chosen
long long timeNs = 0;
int trials = 0;
int ret = 0;
int n = 0;
#if PRINT_TX_STATS
printf("tx: namples=%d, mtu=%zd\n", nsamples, handler->tx_mtu);
#endif
if (!handler->tx_stream_active) {
rf_soapy_start_tx_stream(h);
}
// Convert initial tx time
if (has_time_spec) {
timeNs = (long long)secs * 1000000000;
timeNs = timeNs + (frac_secs * 1000000000);
}
do {
#if USE_TX_MTU
size_t tx_samples = SRSLTE_MIN(nsamples - n, handler->tx_mtu);
#else
size_t tx_samples = nsamples;
if (tx_samples > nsamples - n) {
tx_samples = nsamples - n;
}
#endif
// (re-)set stream flags
flags = 0;
if (is_start_of_burst && is_end_of_burst) {
flags |= SOAPY_SDR_ONE_PACKET;
}
if (is_end_of_burst) {
flags |= SOAPY_SDR_END_BURST;
}
// only set time flag for first tx
if (has_time_spec && n == 0) {
flags |= SOAPY_SDR_HAS_TIME;
}
#if PRINT_TX_STATS
printf(" - tx_samples=%zd at timeNs=%llu flags=%d\n", tx_samples, timeNs, flags);
#endif
const void* buffs_ptr[SRSLTE_MAX_PORTS] = {};
for (int i = 0; i < handler->num_tx_channels; i++) {
cf_t* data_c = data[i] ? data[i] : zero_mem;
buffs_ptr[i] = &data_c[n];
}
ret = SoapySDRDevice_writeStream(
handler->device, handler->txStream, buffs_ptr, tx_samples, &flags, timeNs, timeoutUs);
if (ret >= 0) {
// Tx was ok
#if PRINT_TX_STATS
printf(" - tx: %d/%zd\n", ret, tx_samples);
#endif
// Advance tx time
if (has_time_spec && ret < nsamples) {
long long adv = SoapySDR_ticksToTimeNs(ret, handler->tx_rate);
#if PRINT_TX_STATS
printf(" - tx: timeNs_old=%llu, adv=%llu, timeNs_new=%llu, tx_rate=%f\n",
timeNs,
adv,
timeNs + adv,
handler->tx_rate);
#endif
timeNs += adv;
}
n += ret;
} else if (ret < 0) {
// An error has occured
switch (ret) {
case SOAPY_SDR_TIMEOUT:
log_late(handler, false);
printf("L");
break;
case SOAPY_SDR_STREAM_ERROR:
handler->num_stream_curruption++;
printf("E");
break;
case SOAPY_SDR_TIME_ERROR:
handler->num_time_errors++;
printf("T");
break;
case SOAPY_SDR_UNDERFLOW:
log_underflow(handler);
printf("U");
break;
default:
ERROR("Error during writeStream\n");
exit(-1);
return SRSLTE_ERROR;
}
}
trials++;
} while (n < nsamples && trials < 100);
if (n != nsamples) {
ERROR("Couldn't write all samples after %d trials.\n", trials);
}
return n;
}