mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
272 lines
6.9 KiB
Matlab
272 lines
6.9 KiB
Matlab
%% LTE Downlink Channel Estimation and Equalization
|
|
|
|
%% Cell-Wide Settings
|
|
|
|
clear
|
|
|
|
plot_noise_estimation_only=false;
|
|
|
|
SNR_values_db=linspace(0,10,5);
|
|
Nrealizations=10;
|
|
|
|
w1=0.1;
|
|
w2=0.3;
|
|
|
|
enb.NDLRB = 25; % Number of resource blocks
|
|
|
|
enb.CellRefP = 1; % One transmit antenna port
|
|
enb.NCellID = 0; % Cell ID
|
|
enb.CyclicPrefix = 'Normal'; % Normal cyclic prefix
|
|
enb.DuplexMode = 'FDD'; % FDD
|
|
|
|
K=enb.NDLRB*12;
|
|
P=K/6;
|
|
|
|
%% Channel Model Configuration
|
|
cfg.Seed = 0; % Random channel seed
|
|
cfg.InitTime = 0;
|
|
cfg.NRxAnts = 1; % 1 receive antenna
|
|
cfg.DelayProfile = 'ETU';
|
|
|
|
% doppler 5, 70 300
|
|
|
|
cfg.DopplerFreq = 70; % 120Hz Doppler frequency
|
|
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
|
|
cfg.NTerms = 16; % Oscillators used in fading model
|
|
cfg.ModelType = 'GMEDS'; % Rayleigh fading model type
|
|
cfg.InitPhase = 'Random'; % Random initial phases
|
|
cfg.NormalizePathGains = 'On'; % Normalize delay profile power
|
|
cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
|
|
|
|
%% Channel Estimator Configuration
|
|
cec = struct; % Channel estimation config structure
|
|
cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging
|
|
cec.FreqWindow = 9; % Frequency window size
|
|
cec.TimeWindow = 9; % Time window size
|
|
cec.InterpType = 'Linear'; % 2D interpolation type
|
|
cec.InterpWindow = 'Causal'; % Interpolation window type
|
|
cec.InterpWinSize = 1; % Interpolation window size
|
|
|
|
%% Subframe Resource Grid Size
|
|
|
|
gridsize = lteDLResourceGridSize(enb);
|
|
Ks = gridsize(1); % Number of subcarriers
|
|
L = gridsize(2); % Number of OFDM symbols in one subframe
|
|
Ports = gridsize(3); % Number of transmit antenna ports
|
|
|
|
%% Allocate memory
|
|
Ntests=4;
|
|
hest=cell(1,Ntests);
|
|
for i=1:Ntests
|
|
hest{i}=zeros(K,140);
|
|
end
|
|
hls=zeros(4,4*P*10);
|
|
MSE=zeros(Ntests,Nrealizations,length(SNR_values_db));
|
|
noiseEst=zeros(Ntests,Nrealizations,length(SNR_values_db));
|
|
|
|
legends={'matlab','ls',num2str(w1),num2str(w2)};
|
|
colors={'bo-','rx-','m*-','k+-','c+-'};
|
|
colors2={'b-','r-','m-','k-','c-'};
|
|
|
|
addpath('../../build/srslte/lib/ch_estimation/test')
|
|
|
|
offset=-1;
|
|
|
|
for nreal=1:Nrealizations
|
|
%% Transmit Resource Grid
|
|
txGrid = [];
|
|
|
|
%% Payload Data Generation
|
|
% Number of bits needed is size of resource grid (K*L*P) * number of bits
|
|
% per symbol (2 for QPSK)
|
|
numberOfBits = Ks*L*Ports*2;
|
|
|
|
% Create random bit stream
|
|
inputBits = randi([0 1], numberOfBits, 1);
|
|
|
|
% Modulate input bits
|
|
inputSym = lteSymbolModulate(inputBits,'QPSK');
|
|
|
|
%% Frame Generation
|
|
|
|
% For all subframes within the frame
|
|
for sf = 0:10
|
|
|
|
% Set subframe number
|
|
enb.NSubframe = mod(sf,10);
|
|
|
|
% Generate empty subframe
|
|
subframe = lteDLResourceGrid(enb);
|
|
|
|
% Map input symbols to grid
|
|
subframe(:) = inputSym;
|
|
|
|
% Generate synchronizing signals
|
|
pssSym = ltePSS(enb);
|
|
sssSym = lteSSS(enb);
|
|
pssInd = ltePSSIndices(enb);
|
|
sssInd = lteSSSIndices(enb);
|
|
|
|
% Map synchronizing signals to the grid
|
|
subframe(pssInd) = pssSym;
|
|
subframe(sssInd) = sssSym;
|
|
|
|
% Generate cell specific reference signal symbols and indices
|
|
cellRsSym = lteCellRS(enb);
|
|
cellRsInd = lteCellRSIndices(enb);
|
|
|
|
% Map cell specific reference signal to grid
|
|
subframe(cellRsInd) = cellRsSym;
|
|
|
|
% Append subframe to grid to be transmitted
|
|
txGrid = [txGrid subframe]; %#ok
|
|
|
|
end
|
|
|
|
txGrid([1:5 68:72],6:7) = ones(10,2);
|
|
|
|
%% OFDM Modulation
|
|
|
|
[txWaveform,info] = lteOFDMModulate(enb,txGrid);
|
|
txGrid = txGrid(:,1:140);
|
|
|
|
%% SNR Configuration
|
|
for snr_idx=1:length(SNR_values_db)
|
|
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
|
|
SNR = 10^(SNRdB/20); % Linear SNR
|
|
|
|
fprintf('SNR=%.1f dB\n',SNRdB)
|
|
|
|
%% Fading Channel
|
|
|
|
cfg.SamplingRate = info.SamplingRate;
|
|
[rxWaveform, chinfo] = lteFadingChannel(cfg,txWaveform);
|
|
|
|
%% Additive Noise
|
|
|
|
% Calculate noise gain
|
|
N0 = 1/(sqrt(2.0*enb.CellRefP*double(info.Nfft))*SNR);
|
|
|
|
% Create additive white Gaussian noise
|
|
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
|
|
|
|
% Add noise to the received time domain waveform
|
|
rxWaveform_nonoise = rxWaveform;
|
|
rxWaveform = rxWaveform + noise;
|
|
|
|
%% Synchronization
|
|
|
|
if (offset==-1)
|
|
offset = lteDLFrameOffset(enb,rxWaveform);
|
|
end
|
|
|
|
rxWaveform = rxWaveform(1+offset:end,:);
|
|
rxWaveform_nonoise = rxWaveform_nonoise(1+offset:end,:);
|
|
|
|
%% OFDM Demodulation
|
|
rxGrid = lteOFDMDemodulate(enb,rxWaveform);
|
|
rxGrid = rxGrid(:,1:140);
|
|
|
|
rxGrid_nonoise = lteOFDMDemodulate(enb,rxWaveform_nonoise);
|
|
rxGrid_nonoise = rxGrid_nonoise(:,1:140);
|
|
|
|
% True channel
|
|
h=rxGrid_nonoise./(txGrid);
|
|
|
|
|
|
%% Channel Estimation with Matlab
|
|
tmpnoise=zeros(10,1);
|
|
for i=1:10
|
|
enb.NSubframe=i-1;
|
|
[hest{1}(:,(1:14)+(i-1)*14), tmpnoise(i), hls(:,(1:4*P)+(i-1)*4*P)] = ...
|
|
lteDLChannelEstimate2(enb,cec,rxGrid(:,(i-1)*14+1:i*14));
|
|
end
|
|
noiseEst(1,nreal,snr_idx)=mean(tmpnoise)*sqrt(2)*enb.CellRefP;
|
|
|
|
%% LS-Linear estimation with srsLTE
|
|
[tmp, ~, ~, noiseEst(2,nreal,snr_idx)] = srslte_chest(enb.NCellID,enb.CellRefP,rxGrid);
|
|
hest{2}=reshape(tmp, size(hest{1}));
|
|
|
|
%% LS-Linear + averaging with srsLTE
|
|
[tmp, ~, ~, noiseEst(3,nreal,snr_idx)] = srslte_chest(enb.NCellID,enb.CellRefP,rxGrid,w1);
|
|
hest{3}=reshape(tmp, size(hest{1}));
|
|
|
|
%% LS-Linear + more averaging with srsLTE
|
|
[tmp, ~, ~, noiseEst(4,nreal,snr_idx)] = srslte_chest(enb.NCellID,enb.CellRefP,rxGrid,w2);
|
|
hest{4}=reshape(tmp, size(hest{1}));
|
|
|
|
%% Compute MSE
|
|
for i=1:Ntests
|
|
MSE(i,nreal,snr_idx)=mean(mean(abs(h-hest{i}).^2));
|
|
fprintf('MSE test %d: %f\n',i, 10*log10(MSE(i,nreal,snr_idx)));
|
|
end
|
|
|
|
%% Plot a single realization
|
|
if (length(SNR_values_db) == 1)
|
|
sym=1;
|
|
ref_idx=1:P;
|
|
ref_idx_x=[1:6:K];% (292:6:360)-216];% 577:6:648];
|
|
n=1:(K*length(sym));
|
|
for i=1:Ntests
|
|
plot(n,abs(reshape(hest{i}(:,sym),1,[])),colors2{i});
|
|
hold on;
|
|
end
|
|
plot(ref_idx_x,abs(hls(3,ref_idx)),'ro');
|
|
hold off;
|
|
tmp=cell(Ntests+1,1);
|
|
for i=1:Ntests
|
|
tmp{i}=legends{i};
|
|
end
|
|
tmp{Ntests+1}='LS';
|
|
legend(tmp)
|
|
|
|
xlabel('SNR (dB)')
|
|
ylabel('Channel Gain')
|
|
grid on;
|
|
|
|
fprintf('Mean MMSE Robust %.2f dB\n', 10*log10(MSE(4,nreal,snr_idx)))
|
|
fprintf('Mean MMSE matlab %.2f dB\n', 10*log10(MSE(1,nreal,snr_idx)))
|
|
|
|
end
|
|
|
|
end
|
|
end
|
|
|
|
|
|
%% Compute average MSE and noise estimation
|
|
mean_mse=mean(MSE,2);
|
|
mean_snr=10*log10(1./mean(noiseEst,2));
|
|
|
|
|
|
%% Plot average over all SNR values
|
|
if (length(SNR_values_db) > 1)
|
|
subplot(1,2,1)
|
|
for i=1:Ntests
|
|
plot(SNR_values_db, 10*log10(mean_mse(i,:)),colors{i})
|
|
hold on;
|
|
end
|
|
hold off;
|
|
legend(legends);
|
|
grid on
|
|
xlabel('SNR (dB)')
|
|
ylabel('MSE (dB)')
|
|
|
|
subplot(1,2,2)
|
|
plot(SNR_values_db, SNR_values_db,'k:')
|
|
hold on;
|
|
for i=1:Ntests
|
|
plot(SNR_values_db, mean_snr(i,:), colors{i})
|
|
end
|
|
hold off
|
|
tmp=cell(Ntests+1,1);
|
|
tmp{1}='Theory';
|
|
for i=2:Ntests+1
|
|
tmp{i}=legends{i-1};
|
|
end
|
|
legend(tmp)
|
|
grid on
|
|
xlabel('SNR (dB)')
|
|
ylabel('Estimated SNR (dB)')
|
|
end
|
|
|