mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
11 KiB
C
383 lines
11 KiB
C
/**
|
|
*
|
|
* \section COPYRIGHT
|
|
*
|
|
* Copyright 2013-2014 The libLTE Developers. See the
|
|
* COPYRIGHT file at the top-level directory of this distribution.
|
|
*
|
|
* \section LICENSE
|
|
*
|
|
* This file is part of the libLTE library.
|
|
*
|
|
* libLTE is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as
|
|
* published by the Free Software Foundation, either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* libLTE is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* A copy of the GNU Lesser General Public License can be found in
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
* and at http://www.gnu.org/licenses/.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <complex.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "srslte/common/phy_common.h"
|
|
#include "srslte/mimo/precoding.h"
|
|
#include "srslte/utils/vector.h"
|
|
|
|
|
|
/************************************************
|
|
*
|
|
* RECEIVER SIDE FUNCTIONS
|
|
*
|
|
**************************************************/
|
|
|
|
int precoding_init(precoding_t *q, uint32_t max_frame_len) {
|
|
if (q) {
|
|
bzero(q, sizeof(precoding_t));
|
|
|
|
q->h_mod = vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
if (!q->h_mod) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->tmp1 = vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
if (!q->tmp1) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->tmp2 = vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
if (!q->tmp2) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->tmp3 = vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
if (!q->tmp3) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->y_mod = vec_malloc(sizeof(float) * max_frame_len);
|
|
if (!q->y_mod) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->z_real = vec_malloc(sizeof(float) * max_frame_len);
|
|
if (!q->z_real) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->z_imag = vec_malloc(sizeof(float) * max_frame_len);
|
|
if (!q->z_imag) {
|
|
perror("malloc");
|
|
goto clean_exit;
|
|
}
|
|
q->max_frame_len = max_frame_len;
|
|
return SRSLTE_SUCCESS;
|
|
} else {
|
|
return SRSLTE_ERROR_INVALID_INPUTS;
|
|
}
|
|
clean_exit:
|
|
precoding_free(q);
|
|
return SRSLTE_ERROR;
|
|
}
|
|
|
|
void precoding_free(precoding_t *q) {
|
|
|
|
if (q->tmp1) {
|
|
free(q->tmp1);
|
|
}
|
|
if (q->tmp2) {
|
|
free(q->tmp2);
|
|
}
|
|
if (q->tmp3) {
|
|
free(q->tmp3);
|
|
}
|
|
if (q->h_mod) {
|
|
free(q->h_mod);
|
|
}
|
|
if (q->y_mod) {
|
|
free(q->y_mod);
|
|
}
|
|
if (q->z_real) {
|
|
free(q->z_real);
|
|
}
|
|
if (q->z_imag) {
|
|
free(q->z_imag);
|
|
}
|
|
bzero(q, sizeof(precoding_t));
|
|
}
|
|
|
|
/* ZF/MMSE SISO equalizer x=y(h'h+no)^(-1)h' (ZF if n0=0.0)*/
|
|
int predecoding_single(precoding_t *q, cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
if (nof_symbols <= q->max_frame_len) {
|
|
// h'h
|
|
vec_abs_square_cf(h, q->y_mod, nof_symbols);
|
|
if (noise_estimate > 0.0) {
|
|
// (h'h + n0)
|
|
vec_sc_add_fff(q->y_mod, noise_estimate, q->y_mod, nof_symbols);
|
|
}
|
|
// y*h'
|
|
vec_prod_conj_ccc(y, h, x, nof_symbols);
|
|
// divide by (h'h+no)
|
|
vec_div_cfc(x,q->y_mod,x,q->z_real,q->z_imag, nof_symbols);
|
|
return nof_symbols;
|
|
} else {
|
|
return SRSLTE_ERROR;
|
|
}
|
|
}
|
|
|
|
/* ZF/MMSE STBC equalizer x=y(H'H+n0·I)^(-1)H' (ZF is n0=0.0)
|
|
*/
|
|
int predecoding_diversity(precoding_t *q, cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
int nof_ports, int nof_symbols, float noise_estimate)
|
|
{
|
|
int i;
|
|
if (nof_ports == 2) {
|
|
|
|
#define new
|
|
#ifdef new
|
|
|
|
// reuse buffers
|
|
cf_t *r0 = q->tmp3;
|
|
cf_t *r1 = &q->tmp3[nof_symbols/2];
|
|
cf_t *h0 = q->h_mod;
|
|
cf_t *h1 = &q->h_mod[nof_symbols/2];
|
|
|
|
float *modhh = q->y_mod;
|
|
float *modh0 = q->z_real;
|
|
float *modh1 = q->z_imag;
|
|
|
|
// prepare buffers
|
|
for (i=0;i<nof_symbols/2;i++) {
|
|
h0[i] = h[0][2*i]; // h0
|
|
h1[i] = h[1][2*i+1]; // h1
|
|
r0[i] = y[2*i]; // r0
|
|
r1[i] = y[2*i+1]; // r1
|
|
}
|
|
|
|
// Compute common dividend and store in y_mod
|
|
vec_abs_square_cf(h0, modh0, nof_symbols/2);
|
|
vec_abs_square_cf(h1, modh1, nof_symbols/2);
|
|
vec_sum_fff(modh0, modh1, modhh, nof_symbols/2);
|
|
//if (noise_estimate > 0.0) {
|
|
// (H'H + n0)
|
|
//vec_sc_add_fff(modhh, noise_estimate, modhh, nof_symbols/2);
|
|
//}
|
|
|
|
vec_sc_prod_fff(modhh, 1/sqrt(2), modhh, nof_symbols/2);
|
|
|
|
// x[0] = r0·h0*/(|h0|+|h1|)+r1*·h1/(|h0|+|h1|)
|
|
vec_prod_conj_ccc(r0,h0,q->tmp1, nof_symbols/2);
|
|
vec_prod_conj_ccc(h1,r1,q->tmp2, nof_symbols/2);
|
|
vec_sum_ccc(q->tmp1, q->tmp2, x[0], nof_symbols/2);
|
|
vec_div_cfc(x[0], modhh, x[0], q->z_real, q->z_imag, nof_symbols/2);
|
|
|
|
// x[1] = r1·h0*/(|h0|+|h1|)-r0*·h1/(|h0|+|h1|)
|
|
vec_prod_conj_ccc(r1,h0,q->tmp1, nof_symbols/2);
|
|
vec_prod_conj_ccc(h1,r0,q->tmp2, nof_symbols/2);
|
|
vec_sub_ccc(q->tmp1, q->tmp2, x[1], nof_symbols/2);
|
|
vec_div_cfc(x[1], modhh, x[1], q->z_real, q->z_imag, nof_symbols/2);
|
|
|
|
#else
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
float hh, hh02, hh13;
|
|
|
|
for (i = 0; i < nof_symbols / 2; i++) {
|
|
h0 = h[0][2 * i];
|
|
h1 = h[1][2 * i];
|
|
hh = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
+ crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1) + noise_estimate;
|
|
r0 = y[2 * i];
|
|
r1 = y[2 * i + 1];
|
|
if (hh == 0) {
|
|
hh = 1e-2;
|
|
}
|
|
x[0][i] = (conjf(h0) * r0 + h1 * conjf(r1)) / hh * sqrt(2);
|
|
x[1][i] = (-h1 * conj(r0) + conj(h0) * r1) / hh * sqrt(2);
|
|
}
|
|
#endif
|
|
return i;
|
|
} else if (nof_ports == 4) {
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
float hh02, hh13;
|
|
|
|
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
|
|
for (i = 0; i < m_ap; i++) {
|
|
h0 = h[0][4 * i];
|
|
h1 = h[1][4 * i + 2];
|
|
h2 = h[2][4 * i];
|
|
h3 = h[3][4 * i + 2];
|
|
hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
|
|
hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
|
|
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
|
|
r0 = y[4 * i];
|
|
r1 = y[4 * i + 1];
|
|
r2 = y[4 * i + 2];
|
|
r3 = y[4 * i + 3];
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2);
|
|
x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2);
|
|
x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2);
|
|
x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2);
|
|
|
|
}
|
|
return i;
|
|
} else {
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
int predecoding_type(precoding_t *q, cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
int nof_ports, int nof_layers, int nof_symbols, lte_mimo_type_t type, float noise_estimate) {
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
nof_ports);
|
|
return -1;
|
|
}
|
|
if (nof_layers > MAX_LAYERS) {
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
MAX_LAYERS, nof_layers);
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case SINGLE_ANTENNA:
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
return predecoding_single(q, y, h[0], x[0], nof_symbols, noise_estimate);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case TX_DIVERSITY:
|
|
if (nof_ports == nof_layers) {
|
|
return predecoding_diversity(q, y, h, x, nof_ports, nof_symbols, noise_estimate);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SPATIAL_MULTIPLEX:
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************
|
|
*
|
|
* TRANSMITTER SIDE FUNCTIONS
|
|
*
|
|
**************************************************/
|
|
|
|
int precoding_single(precoding_t *q, cf_t *x, cf_t *y, int nof_symbols) {
|
|
memcpy(y, x, nof_symbols * sizeof(cf_t));
|
|
return nof_symbols;
|
|
}
|
|
int precoding_diversity(precoding_t *q, cf_t *x[MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_ports,
|
|
int nof_symbols) {
|
|
int i;
|
|
if (nof_ports == 2) {
|
|
for (i = 0; i < nof_symbols; i++) {
|
|
y[0][2 * i] = x[0][i];
|
|
y[1][2 * i] = -conjf(x[1][i]);
|
|
y[0][2 * i + 1] = x[1][i];
|
|
y[1][2 * i + 1] = conjf(x[0][i]);
|
|
}
|
|
// normalize
|
|
vec_sc_prod_cfc(y[0], 1.0/sqrtf(2), y[0], 2*nof_symbols);
|
|
vec_sc_prod_cfc(y[1], 1.0/sqrtf(2), y[1], 2*nof_symbols);
|
|
return 2 * i;
|
|
} else if (nof_ports == 4) {
|
|
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
|
|
int m_ap = 4 * nof_symbols;
|
|
for (i = 0; i < m_ap / 4; i++) {
|
|
y[0][4 * i] = x[0][i] / sqrtf(2);
|
|
y[1][4 * i] = 0;
|
|
y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
y[3][4 * i] = 0;
|
|
|
|
y[0][4 * i + 1] = x[1][i] / sqrtf(2);
|
|
y[1][4 * i + 1] = 0;
|
|
y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
y[3][4 * i + 1] = 0;
|
|
|
|
y[0][4 * i + 2] = 0;
|
|
y[1][4 * i + 2] = x[2][i] / sqrtf(2);
|
|
y[2][4 * i + 2] = 0;
|
|
y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2);
|
|
|
|
y[0][4 * i + 3] = 0;
|
|
y[1][4 * i + 3] = x[3][i] / sqrtf(2);
|
|
y[2][4 * i + 3] = 0;
|
|
y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2);
|
|
}
|
|
return 4 * i;
|
|
} else {
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
int precoding_type(precoding_t *q, cf_t *x[MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_layers,
|
|
int nof_ports, int nof_symbols, lte_mimo_type_t type) {
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
nof_ports);
|
|
return -1;
|
|
}
|
|
if (nof_layers > MAX_LAYERS) {
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
MAX_LAYERS, nof_layers);
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case SINGLE_ANTENNA:
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
return precoding_single(q, x[0], y[0], nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case TX_DIVERSITY:
|
|
if (nof_ports == nof_layers) {
|
|
return precoding_diversity(q, x, y, nof_ports, nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
return -1;
|
|
}
|
|
case SPATIAL_MULTIPLEX:
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|