You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

380 lines
11 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/common/timers.h"
#include <iostream>
#include <random>
#include <srslte/common/tti_sync_cv.h>
#include <thread>
#define TESTASSERT(cond) \
do { \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return -1; \
} \
} while (0)
using namespace srslte;
int timers_test1()
{
timer_handler timers;
uint32_t dur = 5;
{
timer_handler::unique_timer t = timers.get_unique_timer();
TESTASSERT(not t.is_running() and not t.is_expired());
TESTASSERT(t.id() == 0);
timer_handler::unique_timer t2 = timers.get_unique_timer();
TESTASSERT(not t2.is_running() and not t2.is_expired());
TESTASSERT(t2.id() == 1);
TESTASSERT(timers.nof_timers() == 2);
// TEST: Run multiple times with the same duration
bool callback_called = false;
t.set(dur, [&callback_called](int) { callback_called = true; });
TESTASSERT(timers.get_cur_time() == 0);
for (uint32_t runs = 0; runs < 3; ++runs) {
callback_called = false;
TESTASSERT(not t.is_running());
t.run();
TESTASSERT(t.is_running() and not t.is_expired());
for (uint32_t i = 0; i < dur - 1; ++i) {
timers.step_all();
TESTASSERT(t.is_running() and not t.is_expired());
}
timers.step_all();
TESTASSERT(not t.is_running() and t.is_expired());
TESTASSERT(callback_called);
}
TESTASSERT(timers.get_cur_time() == 3 * dur);
// TEST: interrupt a timer. check if callback was called
callback_called = false;
t.run();
timers.step_all();
TESTASSERT(t.is_running());
t.stop();
TESTASSERT(not t.is_running());
for (uint32_t i = 0; i < dur; ++i) {
timers.step_all();
TESTASSERT(not t.is_running());
}
TESTASSERT(not callback_called);
// TEST: call timer::run() when it is already running. Check if duration gets extended.
callback_called = false;
t.run();
timers.step_all();
TESTASSERT(t.is_running());
t.run(); // re-run
for (uint32_t i = 0; i < dur - 1; ++i) {
timers.step_all();
TESTASSERT(t.is_running());
}
timers.step_all();
TESTASSERT(not t.is_running());
TESTASSERT(callback_called);
// TEST: ordering of timers is respected
timer_handler::unique_timer t3 = timers.get_unique_timer();
TESTASSERT(t3.id() == 2);
int first_id = -1, last_id = -1;
auto callback = [&first_id, &last_id](int id) {
if (first_id < 0) {
printf("First timer id=%d\n", id);
first_id = id;
}
last_id = id;
};
t.set(4, callback);
t2.set(2, callback);
t3.set(6, callback);
t.run();
t2.run();
t3.run();
for (uint32_t i = 0; i < 5; ++i) {
timers.step_all();
TESTASSERT(i >= 3 or t.is_running());
TESTASSERT(i >= 1 or t2.is_running());
TESTASSERT(t3.is_running());
}
timers.step_all();
TESTASSERT(t.is_expired() and t2.is_expired() and t3.is_expired());
TESTASSERT(first_id == 1);
printf("Last timer id=%d\n", last_id);
TESTASSERT(last_id == 2);
}
// TEST: timer dtor is called and removes "timer" from "timers"
TESTASSERT(timers.nof_timers() == 0);
return SRSLTE_SUCCESS;
}
int timers_test2()
{
/**
* Description:
* - calling stop() early, forbids the timer from getting expired
* - calling stop() after timer has expired should be a noop
*/
timer_handler timers;
uint32_t duration = 2;
auto utimer = timers.get_unique_timer();
auto utimer2 = timers.get_unique_timer();
utimer.set(duration);
utimer2.set(duration);
// TEST 1: call utimer.stop() early and check if timer expires
utimer.run();
utimer2.run();
TESTASSERT(utimer.is_running() and not utimer.is_expired());
utimer.stop();
TESTASSERT(not utimer.is_running() and not utimer.is_expired());
for (uint32_t i = 0; i < 5; ++i) {
timers.step_all();
}
TESTASSERT(not utimer.is_expired());
TESTASSERT(utimer2.is_expired());
// TEST 2: call utimer.stop() after it expires and assert it is still expired
utimer2.stop();
TESTASSERT(utimer2.is_expired());
return SRSLTE_SUCCESS;
}
int timers_test3()
{
/**
* Description:
* - setting a new duration while the timer is already running should not stop timer, and should extend timeout
*/
timer_handler timers;
uint32_t duration = 5;
auto utimer = timers.get_unique_timer();
utimer.set(duration);
utimer.run();
for (uint32_t i = 0; i < 2 * duration + 1; ++i) {
timers.step_all();
if ((i % 2) == 0) {
// extends lifetime
utimer.set(duration);
}
TESTASSERT(utimer.is_running());
}
for (uint32_t i = 0; i < duration - 1; ++i) {
timers.step_all();
TESTASSERT(utimer.is_running());
}
timers.step_all();
TESTASSERT(not utimer.is_running());
return SRSLTE_SUCCESS;
}
struct timers_test4_ctxt {
std::vector<timer_handler::unique_timer> timers;
srslte::tti_sync_cv tti_sync1;
srslte::tti_sync_cv tti_sync2;
const uint32_t duration = 1000;
};
static void timers2_test4_thread(timers_test4_ctxt* ctx)
{
std::mt19937 mt19937(4);
std::uniform_real_distribution<float> real_dist(0.0f, 1.0f);
for (uint32_t d = 0; d < ctx->duration; d++) {
// make random events
for (uint32_t i = 1; i < ctx->timers.size(); i++) {
if (0.1f > real_dist(mt19937)) {
ctx->timers[i].run();
}
if (0.1f > real_dist(mt19937)) {
ctx->timers[i].stop();
}
if (0.1f > real_dist(mt19937)) {
ctx->timers[i].set(static_cast<uint32_t>(ctx->duration * real_dist(mt19937)));
ctx->timers[i].run();
}
}
// Send finished to main thread
ctx->tti_sync1.increase();
// Wait to main thread to check results
ctx->tti_sync2.wait();
}
}
int timers_test4()
{
timers_test4_ctxt* ctx = new timers_test4_ctxt;
timer_handler timers;
uint32_t nof_timers = 32;
std::mt19937 mt19937(4);
std::uniform_real_distribution<float> real_dist(0.0f, 1.0f);
// Generate all timers and start them
for (uint32_t i = 0; i < nof_timers; i++) {
ctx->timers.push_back(timers.get_unique_timer());
ctx->timers[i].set(ctx->duration);
ctx->timers[i].run();
}
// Create side thread
std::thread thread(timers2_test4_thread, ctx);
for (uint32_t d = 0; d < ctx->duration; d++) {
// make random events
for (uint32_t i = 1; i < nof_timers; i++) {
if (0.1f > real_dist(mt19937)) {
ctx->timers[i].run();
}
if (0.1f > real_dist(mt19937)) {
ctx->timers[i].stop();
}
if (0.1f > real_dist(mt19937)) {
ctx->timers[i].set(static_cast<uint32_t>(ctx->duration * real_dist(mt19937)));
ctx->timers[i].run();
}
}
// first times, does not have event, it shall keep running
TESTASSERT(ctx->timers[0].is_running());
// Increment time
timers.step_all();
// wait second thread to finish events
ctx->tti_sync1.wait();
// assert no timer got wrong values
for (uint32_t i = 0; i < nof_timers; i++) {
if (ctx->timers[i].is_running()) {
TESTASSERT(ctx->timers[i].time_elapsed() <= ctx->timers[i].duration());
}
}
// Start new TTI
ctx->tti_sync2.increase();
}
// Finish asynchronous thread
thread.join();
// First timer should have expired
TESTASSERT(ctx->timers[0].is_expired());
TESTASSERT(not ctx->timers[0].is_running());
// Run for the maximum period
for (uint32_t d = 0; d < ctx->duration; d++) {
timers.step_all();
}
// No timer should be running
for (uint32_t i = 0; i < nof_timers; i++) {
TESTASSERT(not ctx->timers[i].is_running());
}
delete ctx;
return SRSLTE_SUCCESS;
}
/**
* Description: Delaying a callback using the timer_handler
*/
int timers_test5()
{
timer_handler timers;
TESTASSERT(timers.nof_timers() == 0);
TESTASSERT(timers.nof_running_timers() == 0);
std::vector<int> vals;
// TTI 0: Add a unique_timer of duration=5
timer_handler::unique_timer t = timers.get_unique_timer();
TESTASSERT(timers.nof_timers() == 1);
t.set(5, [&vals](uint32_t tid) { vals.push_back(1); });
t.run();
TESTASSERT(timers.nof_running_timers() == 1);
timers.step_all();
// TTI 1: Add two delayed callbacks, with duration=2 and 6
{
// ensure captures by value are ok
std::string string = "test string";
timers.defer_callback(2, [&vals, string]() {
vals.push_back(2);
if (string != "test string") {
ERROR("string was not captured correctly\n");
exit(-1);
}
});
}
timers.defer_callback(6, [&vals]() { vals.push_back(3); });
TESTASSERT(timers.nof_timers() == 3);
TESTASSERT(timers.nof_running_timers() == 3);
timers.step_all();
timers.step_all();
// TTI 3: First callback should have been triggered by now
TESTASSERT(timers.nof_running_timers() == 2);
TESTASSERT(timers.nof_timers() == 2);
TESTASSERT(vals.size() == 1);
TESTASSERT(vals[0] == 2);
timers.step_all();
timers.step_all();
// TTI 5: Unique timer should have been triggered by now
TESTASSERT(timers.nof_running_timers() == 1);
TESTASSERT(timers.nof_timers() == 2);
TESTASSERT(vals.size() == 2);
TESTASSERT(vals[1] == 1);
timers.step_all();
timers.step_all();
// TTI 7: Second callback should have been triggered by now
TESTASSERT(timers.nof_running_timers() == 0);
TESTASSERT(timers.nof_timers() == 1);
TESTASSERT(vals.size() == 3);
TESTASSERT(vals[2] == 3);
return SRSLTE_SUCCESS;
}
int main()
{
TESTASSERT(timers_test1() == SRSLTE_SUCCESS);
TESTASSERT(timers_test2() == SRSLTE_SUCCESS);
TESTASSERT(timers_test3() == SRSLTE_SUCCESS);
TESTASSERT(timers_test4() == SRSLTE_SUCCESS);
TESTASSERT(timers_test5() == SRSLTE_SUCCESS);
printf("Success\n");
return 0;
}