You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/upper/rlc_stress_test.cc

598 lines
19 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsran/common/block_queue.h"
#include "srsran/common/crash_handler.h"
#include "srsran/common/rlc_pcap.h"
#include "srsran/common/test_common.h"
#include "srsran/common/threads.h"
#include "srsran/upper/rlc.h"
#include <boost/program_options.hpp>
#include <boost/program_options/parsers.hpp>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <pthread.h>
#include <random>
#define LOG_HEX_LIMIT (-1)
#define PCAP_CRNTI (0x1001)
#define PCAP_TTI (666)
#include "srsran/common/mac_pcap.h"
#include "srsran/mac/mac_sch_pdu_nr.h"
static std::unique_ptr<srsran::mac_pcap> pcap_handle = nullptr;
int write_pdu_to_pcap(const bool is_dl, const uint32_t lcid, const uint8_t* payload, const uint32_t len)
{
if (pcap_handle) {
srsran::byte_buffer_t tx_buffer;
srsran::mac_sch_pdu_nr tx_pdu;
tx_pdu.init_tx(&tx_buffer, len + 10);
tx_pdu.add_sdu(lcid, payload, len);
tx_pdu.pack();
if (is_dl) {
pcap_handle->write_dl_crnti_nr(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI);
} else {
pcap_handle->write_ul_crnti_nr(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI);
}
return SRSRAN_SUCCESS;
}
return SRSRAN_ERROR;
}
using namespace std;
using namespace srsue;
using namespace srsran;
namespace bpo = boost::program_options;
#define MIN_SDU_SIZE (5)
#define MAX_SDU_SIZE (1500)
typedef struct {
std::string rat;
std::string mode;
int32_t sdu_size;
uint32_t test_duration_sec;
float pdu_drop_rate;
float pdu_cut_rate;
float pdu_duplicate_rate;
uint32_t sdu_gen_delay_usec;
uint32_t pdu_tx_delay_usec;
uint32_t log_level;
bool single_tx;
bool write_pcap;
uint32_t avg_opp_size;
bool random_opp;
bool zero_seed;
uint32_t nof_pdu_tti;
uint32_t max_retx;
} stress_test_args_t;
void parse_args(stress_test_args_t* args, int argc, char* argv[])
{
// Command line only options
bpo::options_description general("General options");
general.add_options()("help,h", "Produce help message")("version,v", "Print version information and exit");
// clang-format off
// Command line or config file options
bpo::options_description common("Configuration options");
common.add_options()
("rat", bpo::value<std::string>(&args->rat)->default_value("LTE"), "The RLC version to use (LTE/NR)")
("mode", bpo::value<std::string>(&args->mode)->default_value("AM"), "Whether to test RLC acknowledged or unacknowledged mode (AM/UM for LTE) (UM6/UM12 for NR)")
("duration", bpo::value<uint32_t>(&args->test_duration_sec)->default_value(5), "Duration (sec)")
("sdu_size", bpo::value<int32_t>(&args->sdu_size)->default_value(-1), "Size of SDUs (-1 means random)")
("random_opp", bpo::value<bool>(&args->random_opp)->default_value(true), "Whether to generate random MAC opportunities")
("avg_opp_size", bpo::value<uint32_t>(&args->avg_opp_size)->default_value(1505), "Size of the MAC opportunity (if not random)")
("sdu_gen_delay", bpo::value<uint32_t>(&args->sdu_gen_delay_usec)->default_value(0), "SDU generation delay (usec)")
("pdu_tx_delay", bpo::value<uint32_t>(&args->pdu_tx_delay_usec)->default_value(0), "Delay in MAC for transfering PDU from tx'ing RLC to rx'ing RLC (usec)")
("pdu_drop_rate", bpo::value<float>(&args->pdu_drop_rate)->default_value(0.1), "Rate at which RLC PDUs are dropped")
("pdu_cut_rate", bpo::value<float>(&args->pdu_cut_rate)->default_value(0.0), "Rate at which RLC PDUs are chopped in length")
("pdu_duplicate_rate", bpo::value<float>(&args->pdu_duplicate_rate)->default_value(0.0), "Rate at which RLC PDUs are duplicated")
("loglevel", bpo::value<uint32_t>(&args->log_level)->default_value((int)srslog::basic_levels::debug), "Log level (1=Error,2=Warning,3=Info,4=Debug)")
("singletx", bpo::value<bool>(&args->single_tx)->default_value(false), "If set to true, only one node is generating data")
("pcap", bpo::value<bool>(&args->write_pcap)->default_value(false), "Whether to write all RLC PDU to PCAP file")
("zeroseed", bpo::value<bool>(&args->zero_seed)->default_value(false), "Whether to initialize random seed to zero")
("max_retx", bpo::value<uint32_t>(&args->max_retx)->default_value(32), "Maximum number of RLC retransmission attempts")
("nof_pdu_tti", bpo::value<uint32_t>(&args->nof_pdu_tti)->default_value(1), "Number of PDUs processed in a TTI");
// clang-format on
// these options are allowed on the command line
bpo::options_description cmdline_options;
cmdline_options.add(common).add(general);
// parse the command line and store result in vm
bpo::variables_map vm;
bpo::store(bpo::command_line_parser(argc, argv).options(cmdline_options).run(), vm);
bpo::notify(vm);
// help option was given - print usage and exit
if (vm.count("help") > 0) {
cout << "Usage: " << argv[0] << " [OPTIONS] config_file" << endl << endl;
cout << common << endl << general << endl;
exit(0);
}
if (args->log_level > 4) {
args->log_level = 4;
printf("Set log level to %d (%s)\n",
args->log_level,
srslog::basic_level_to_string(static_cast<srslog::basic_levels>(args->log_level)));
}
// convert mode to upper case
for (auto& c : args->mode) {
c = toupper(c);
}
}
class mac_dummy : public srsran::thread
{
public:
mac_dummy(rlc_interface_mac* rlc1_,
rlc_interface_mac* rlc2_,
stress_test_args_t args_,
uint32_t lcid_,
timer_handler* timers_,
rlc_pcap* pcap_,
uint32_t seed_) :
run_enable(true),
rlc1(rlc1_),
rlc2(rlc2_),
args(args_),
pcap(pcap_),
lcid(lcid_),
timers(timers_),
logger(srslog::fetch_basic_logger("MAC", false)),
thread("MAC_DUMMY"),
real_dist(0.0, 1.0),
mt19937(seed_)
{
logger.set_level(static_cast<srslog::basic_levels>(args.log_level));
logger.set_hex_dump_max_size(LOG_HEX_LIMIT);
}
void stop()
{
run_enable = false;
wait_thread_finish();
}
void enqueue_task(srsran::move_task_t task) { pending_tasks.push(std::move(task)); }
private:
void run_tx_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, std::vector<unique_byte_buffer_t>& pdu_list)
{
// Generate A number of MAC PDUs
for (uint32_t i = 0; i < args.nof_pdu_tti; i++) {
// Create PDU unique buffer
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
if (!pdu) {
printf("Fatal Error: Could not allocate PDU in mac_reader::run_thread\n");
exit(-1);
}
// Get MAC PDU size
float factor = 1.0f;
if (args.random_opp) {
factor = 0.5f + real_dist(mt19937);
}
int opp_size = static_cast<int>(args.avg_opp_size * factor);
// Request data to transmit
uint32_t buf_state = tx_rlc->get_buffer_state(lcid);
if (buf_state > 0) {
int read = tx_rlc->read_pdu(lcid, pdu->msg, opp_size);
pdu->N_bytes = read;
// Push PDU in the list
pdu_list.push_back(std::move(pdu));
}
}
}
void run_rx_tti(rlc_interface_mac* tx_rlc,
rlc_interface_mac* rx_rlc,
bool is_dl,
std::vector<unique_byte_buffer_t>& pdu_list)
{
// Sleep if necessary
if (args.pdu_tx_delay_usec > 0) {
std::this_thread::sleep_for(std::chrono::microseconds(args.pdu_tx_delay_usec));
}
auto it = pdu_list.begin(); // PDU iterator
bool skip_action = false; // Avoid discarding a duplicated or duplicating a discarded
while (it != pdu_list.end()) {
// Get PDU unique buffer
unique_byte_buffer_t& pdu = *it;
// Drop
float rnd = real_dist(mt19937);
if (std::isnan(rnd) || (((rnd > args.pdu_drop_rate) || skip_action) && pdu->N_bytes > 0)) {
uint32_t pdu_len = pdu->N_bytes;
// Cut
if ((real_dist(mt19937) < args.pdu_cut_rate)) {
int cut_pdu_len = static_cast<int>(pdu_len * real_dist(mt19937));
logger.info("Cutting MAC PDU len (%d B -> %d B)", pdu_len, cut_pdu_len);
pdu_len = cut_pdu_len;
}
// Write PDU in RX
rx_rlc->write_pdu(lcid, pdu->msg, pdu_len);
// Write PCAP
write_pdu_to_pcap(is_dl, 4, pdu->msg, pdu_len); // Only handles NR rat
if (is_dl) {
pcap->write_dl_ccch(pdu->msg, pdu_len);
} else {
pcap->write_ul_ccch(pdu->msg, pdu_len);
}
} else {
logger.warning(pdu->msg, pdu->N_bytes, "Dropping RLC PDU (%d B)", pdu->N_bytes);
skip_action = true; // Avoid drop duplicating this PDU
}
// Duplicate
if (real_dist(mt19937) > args.pdu_duplicate_rate || skip_action) {
it++;
skip_action = false; // Allow action on the next PDU
} else {
logger.warning(pdu->msg, pdu->N_bytes, "Duplicating RLC PDU (%d B)", pdu->N_bytes);
skip_action = true; // Avoid drop of this PDU
}
}
}
void run_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, bool is_dl)
{
std::vector<unique_byte_buffer_t> pdu_list;
// Run Tx
run_tx_tti(tx_rlc, rx_rlc, pdu_list);
// Reverse PDUs
std::reverse(pdu_list.begin(), pdu_list.end());
// Run Rx
run_rx_tti(tx_rlc, rx_rlc, is_dl, pdu_list);
}
void run_thread() override
{
srsran::move_task_t task;
while (run_enable) {
// Downlink direction first (RLC1->RLC2)
run_tti(rlc1, rlc2, true);
// UL direction (RLC2->RLC1)
run_tti(rlc2, rlc1, false);
// step timer
timers->step_all();
if (pending_tasks.try_pop(&task)) {
task();
}
}
if (pending_tasks.try_pop(&task)) {
task();
}
}
rlc_interface_mac* rlc1 = nullptr;
rlc_interface_mac* rlc2 = nullptr;
bool run_enable = false;
stress_test_args_t args = {};
rlc_pcap* pcap = nullptr;
uint32_t lcid = 0;
srslog::basic_logger& logger;
srsran::timer_handler* timers = nullptr;
srsran::block_queue<srsran::move_task_t> pending_tasks;
std::mt19937 mt19937;
std::uniform_real_distribution<float> real_dist;
};
class rlc_tester : public pdcp_interface_rlc, public rrc_interface_rlc, public srsran::thread
{
public:
rlc_tester(rlc_interface_pdcp* rlc_pdcp_,
std::string name_,
stress_test_args_t args_,
uint32_t lcid_,
uint32_t seed_) :
logger(srslog::fetch_basic_logger(name_.c_str(), false)),
rlc_pdcp(rlc_pdcp_),
name(name_),
args(args_),
lcid(lcid_),
thread("RLC_TESTER"),
int_dist(MIN_SDU_SIZE, MAX_SDU_SIZE),
mt19937(seed_)
{
logger.set_level(srslog::basic_levels::error);
logger.set_hex_dump_max_size(LOG_HEX_LIMIT);
}
void stop()
{
run_enable = false;
wait_thread_finish();
}
// PDCP interface
void write_pdu(uint32_t rx_lcid, unique_byte_buffer_t sdu)
{
assert(rx_lcid == lcid);
if (args.mode != "AM") {
// Only AM will guarantee to deliver SDUs, take first byte as reference for other modes
next_expected_sdu = sdu->msg[0];
}
// check SDU content (consider faster alternative)
for (uint32_t i = 0; i < sdu->N_bytes; ++i) {
if (sdu->msg[i] != next_expected_sdu) {
logger.error(sdu->msg,
sdu->N_bytes,
"Received malformed SDU with size %d, expected data 0x%X",
sdu->N_bytes,
next_expected_sdu);
fprintf(stderr, "Received malformed SDU with size %d\n", sdu->N_bytes);
fprintf(stdout, "Received malformed SDU with size %d\n", sdu->N_bytes);
std::this_thread::sleep_for(std::chrono::seconds(1)); // give some time to flush logs
exit(-1);
}
}
next_expected_sdu += 1;
rx_pdus++;
}
void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {}
void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {}
void write_pdu_pcch(unique_byte_buffer_t sdu) {}
void write_pdu_mch(uint32_t lcid_, srsran::unique_byte_buffer_t sdu) {}
void notify_delivery(uint32_t lcid_, const srsran::pdcp_sn_vector_t& pdcp_sns) {}
void notify_failure(uint32_t lcid_, const srsran::pdcp_sn_vector_t& pdcp_sns) {}
// RRC interface
void max_retx_attempted()
{
logger.error(
"Maximum number of RLC retransmission reached. Consider increasing threshold or lowering channel drop rate.");
std::this_thread::sleep_for(std::chrono::seconds(1));
exit(1);
}
const char* get_rb_name(uint32_t rx_lcid) { return "DRB1"; }
int get_nof_rx_pdus() { return rx_pdus; }
private:
const static size_t max_pdcp_sn = 262143u; // 18bit SN
void run_thread()
{
uint32_t pdcp_sn = 0;
uint32_t sdu_size = 0;
uint8_t payload = 0x0; // increment for each SDU
while (run_enable) {
// SDU queue is full, don't assign PDCP SN
if (rlc_pdcp->sdu_queue_is_full(lcid)) {
continue;
}
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
if (pdu == NULL) {
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
// backoff for a bit
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue;
}
pdu->md.pdcp_sn = pdcp_sn;
// random or fixed SDU size
if (args.sdu_size < 1) {
sdu_size = int_dist(mt19937);
} else {
sdu_size = args.sdu_size;
}
for (uint32_t i = 0; i < sdu_size; i++) {
pdu->msg[i] = payload;
}
pdu->N_bytes = sdu_size;
payload++;
rlc_pdcp->write_sdu(lcid, std::move(pdu));
pdcp_sn = (pdcp_sn + 1) % max_pdcp_sn;
if (args.sdu_gen_delay_usec > 0) {
std::this_thread::sleep_for(std::chrono::microseconds(args.sdu_gen_delay_usec));
}
}
}
bool run_enable = true;
/// Tx uses thread-local PDCP SN to set SDU content, the Rx uses this variable to check received SDUs
uint8_t next_expected_sdu = 0;
uint64_t rx_pdus = 0;
uint32_t lcid = 0;
srslog::basic_logger& logger;
std::string name;
stress_test_args_t args = {};
rlc_interface_pdcp* rlc_pdcp = nullptr; // used by run_thread to push PDCP SDUs to RLC
std::mt19937 mt19937;
std::uniform_int_distribution<> int_dist;
};
void stress_test(stress_test_args_t args)
{
auto& log1 = srslog::fetch_basic_logger("RLC_1", false);
log1.set_level(static_cast<srslog::basic_levels>(args.log_level));
log1.set_hex_dump_max_size(LOG_HEX_LIMIT);
auto& log2 = srslog::fetch_basic_logger("RLC_2", false);
log2.set_level(static_cast<srslog::basic_levels>(args.log_level));
log2.set_hex_dump_max_size(LOG_HEX_LIMIT);
rlc_pcap pcap;
uint32_t lcid = 1;
rlc_config_t cnfg_ = {};
if (args.rat == "LTE") {
if (args.mode == "AM") {
// config RLC AM bearer
cnfg_ = rlc_config_t::default_rlc_am_config();
cnfg_.am.max_retx_thresh = args.max_retx;
} else if (args.mode == "UM") {
// config UM bearer
cnfg_ = rlc_config_t::default_rlc_um_config();
} else if (args.mode == "TM") {
// use default LCID in TM
lcid = 0;
} else {
cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl;
exit(-1);
}
if (args.write_pcap) {
pcap.open("rlc_stress_test.pcap", cnfg_);
}
} else if (args.rat == "NR") {
if (args.mode == "UM6") {
cnfg_ = rlc_config_t::default_rlc_um_nr_config(6);
} else if (args.mode == "UM12") {
cnfg_ = rlc_config_t::default_rlc_um_nr_config(12);
} else {
cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl;
exit(-1);
}
if (args.write_pcap) {
pcap_handle = std::unique_ptr<srsran::mac_pcap>(new srsran::mac_pcap());
pcap_handle->open("rlc_stress_test_nr.pcap");
}
} else {
cout << "Unsupported RAT mode " << args.rat << ", exiting." << endl;
exit(-1);
}
// generate random seed if needed
uint32_t seed = 0;
if (not args.zero_seed) {
std::random_device rd;
seed = rd();
}
srsran::timer_handler timers(8);
rlc rlc1(log1.id().c_str());
rlc rlc2(log2.id().c_str());
rlc_tester tester1(&rlc1, "tester1", args, lcid, seed);
rlc_tester tester2(&rlc2, "tester2", args, lcid, seed);
mac_dummy mac(&rlc1, &rlc2, args, lcid, &timers, &pcap, seed);
rlc1.init(&tester1, &tester1, &timers, 0);
rlc2.init(&tester2, &tester2, &timers, 0);
// only add AM and UM bearers
if (args.mode != "TM") {
rlc1.add_bearer(lcid, cnfg_);
rlc2.add_bearer(lcid, cnfg_);
}
printf("Starting test ..\n");
tester1.start(7);
if (!args.single_tx) {
tester2.start(7);
}
mac.start();
// wait until test is over
std::this_thread::sleep_for(std::chrono::seconds(args.test_duration_sec));
printf("Test finished, tearing down ..\n");
// Stop RLC instances first to release blocking writers
mac.enqueue_task([&rlc1, &rlc2]() {
rlc1.stop();
rlc2.stop();
});
printf("RLC entities stopped.\n");
// Stop upper layer writers
tester1.stop();
tester2.stop();
printf("Writers stopped.\n");
mac.stop();
if (args.write_pcap) {
pcap.close();
}
rlc_metrics_t metrics = {};
rlc1.get_metrics(metrics, 1);
printf("RLC1 received %d SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n",
tester1.get_nof_rx_pdus(),
args.test_duration_sec,
static_cast<double>(tester1.get_nof_rx_pdus() / args.test_duration_sec),
metrics.bearer[lcid].num_tx_pdu_bytes,
metrics.bearer[lcid].num_rx_pdu_bytes);
rlc_bearer_metrics_print(metrics.bearer[lcid]);
rlc2.get_metrics(metrics, 1);
printf("RLC2 received %d SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n",
tester2.get_nof_rx_pdus(),
args.test_duration_sec,
static_cast<double>(tester2.get_nof_rx_pdus() / args.test_duration_sec),
metrics.bearer[lcid].num_tx_pdu_bytes,
metrics.bearer[lcid].num_rx_pdu_bytes);
rlc_bearer_metrics_print(metrics.bearer[lcid]);
}
int main(int argc, char** argv)
{
srsran_debug_handle_crash(argc, argv);
stress_test_args_t args = {};
parse_args(&args, argc, argv);
srslog::init();
stress_test(args);
exit(0);
}