You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsenb/test/mac/scheduler_test_rand.cc

1136 lines
46 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsenb/hdr/stack/mac/scheduler.h"
#include "srsenb/hdr/stack/mac/scheduler_carrier.h"
#include "srsenb/hdr/stack/mac/scheduler_ue.h"
#include <algorithm>
#include <random>
#include <set>
#include <srslte/srslte.h>
#include <unistd.h>
#include "srsenb/hdr/phy/phy.h"
#include "srsenb/hdr/stack/mac/mac.h"
#include "srslte/common/log_filter.h"
#include "srslte/interfaces/enb_interfaces.h"
#include "srslte/interfaces/sched_interface.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/radio/radio.h"
/********************************************************
* Random Tester for Scheduler.
* Current Checks:
* - Check if users are only added during a PRACH TTI
* - Allocation (DCI+RBs) of users that no longer exist
* - RAR is scheduled within the RAR window
* - Msg3 checks:
* - scheduled/received at expected TTI
* - with the correct RNTI and without PDCCH alloc
* - unexpected msg3 arrival
* - Users without data to Tx cannot be allocated in UL
* - Retxs always take precedence
* - DCI:
* - collisions detected
* - mismatch between the union of all dcis and
* scheduler class aggregate dci value
* - Invalid BC SIB index or TBS
* - Harqs:
* - invalid pids scheduled
* - empty harqs scheduled
* - invalid harq TTI
* - consistent NCCE loc
* - invalid retx number
* - DL adaptive retx/new tx <=> PDCCH alloc
* ...
*******************************************************/
/***************************
* Setup Random generators
**************************/
// uint32_t const seed = std::random_device()();
uint32_t const seed = 2452071795; // time(nullptr);
std::default_random_engine rand_gen(seed);
std::uniform_real_distribution<float> unif_dist(0, 1.0);
float randf()
{
return unif_dist(rand_gen);
}
uint32_t err_counter = 0;
uint32_t warn_counter = 0;
struct ue_stats_t {
uint64_t nof_dl_rbs = 0;
uint64_t nof_ul_rbs = 0;
};
std::map<uint16_t, ue_stats_t> ue_stats;
template <class MapContainer, class Predicate>
void erase_if(MapContainer& c, Predicate should_remove)
{
for (auto it = c.begin(); it != c.end();) {
if (should_remove(*it)) {
it = c.erase(it);
} else {
++it;
}
}
}
/*******************
* Logging *
*******************/
class log_tester : public srslte::log_filter
{
public:
explicit log_tester(std::string layer) : srslte::log_filter(layer) {}
~log_tester() final
{
info("[TESTER] UE stats:\n");
for (auto& e : ue_stats) {
info("0x%x: {DL RBs: %lu, UL RBs: %lu}\n", e.first, e.second.nof_dl_rbs, e.second.nof_ul_rbs);
}
info("[TESTER] This was the seed: %u\n", seed);
}
};
log_tester log_out("ALL");
#define Warning(fmt, ...) \
log_out.warning(fmt, ##__VA_ARGS__); \
warn_counter++
#define TestError(fmt, ...) \
log_out.error(fmt, ##__VA_ARGS__); \
exit(-1)
#define CondError(cond, fmt, ...) \
do { \
if (cond) { \
log_out.error(fmt, ##__VA_ARGS__); \
exit(-1); \
} \
} while (0)
/*******************
* Dummies *
*******************/
struct sched_sim_args {
struct tti_event_t {
struct user_event_t {
uint32_t sr_data = 0;
uint32_t dl_data = 0;
uint32_t dl_nof_retxs = 0;
};
std::map<uint16_t, user_event_t> users;
bool new_user = false;
bool rem_user = false;
uint32_t new_rnti;
uint32_t rem_rnti;
};
std::vector<tti_event_t> tti_events;
uint32_t nof_ttis;
float P_retx;
srsenb::sched_interface::ue_cfg_t ue_cfg;
srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg;
};
// Designed for testing purposes
struct sched_tester : public srsenb::sched {
struct tester_user_results {
uint32_t dl_pending_data = 0;
uint32_t ul_pending_data = 0; ///< data pending for UL
bool has_dl_retx = false;
bool has_dl_tx = false;
bool has_ul_tx = false; ///< has either tx or retx
bool has_ul_retx = false;
bool has_ul_newtx = false; ///< *no* retx, but has tx
bool ul_retx_got_delayed = false;
srsenb::sched_interface::ul_sched_data_t* ul_sched = nullptr; // fast lookup
srsenb::sched_interface::dl_sched_data_t* dl_sched = nullptr; // fast lookup
srsenb::dl_harq_proc dl_harqs[2 * FDD_HARQ_DELAY_MS];
srsenb::ul_harq_proc ul_harq;
};
struct sched_tti_data {
bool is_prach_tti_tx_ul = false;
uint32_t ul_sf_idx;
uint32_t tti_rx;
uint32_t tti_tx_dl;
uint32_t tti_tx_ul;
uint32_t current_cfi;
srsenb::ra_sched::pending_msg3_t ul_pending_msg3;
srslte::bounded_bitset<128, true> used_cce;
// std::vector<bool> used_cce;
std::map<uint16_t, tester_user_results> ue_data; ///< stores buffer state of each user
tester_user_results total_ues; ///< stores combined UL/DL buffer state
srsenb::sched_interface::ul_sched_res_t sched_result_ul;
srsenb::sched_interface::dl_sched_res_t sched_result_dl;
};
struct ue_info {
int prach_tti = -1, rar_tti = -1, msg3_tti = -1;
srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg;
srsenb::sched_interface::ue_cfg_t user_cfg;
uint32_t dl_data = 0;
uint32_t ul_data = 0;
};
struct ack_info_t {
uint16_t rnti;
uint32_t tti;
bool dl_ack = false;
uint32_t retx_delay = 0;
srsenb::dl_harq_proc dl_harq;
};
struct ul_ack_info_t {
uint16_t rnti;
uint32_t tti_ack, tti_tx_ul;
bool ack = false;
srsenb::ul_harq_proc ul_harq;
};
uint32_t nof_rbgs = 0;
sched_sim_args sim_args;
// tester control data
std::map<uint16_t, ue_info> tester_ues;
std::multimap<uint32_t, ack_info_t> to_ack;
std::multimap<uint32_t, ul_ack_info_t> to_ul_ack;
typedef std::multimap<uint32_t, ack_info_t>::iterator ack_it_t;
// sched results
sched_tti_data tti_data;
void add_user(uint16_t rnti,
srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg,
srsenb::sched_interface::ue_cfg_t ue_cfg_);
void rem_user(uint16_t rnti);
void test_ra();
void test_tti_result();
void assert_no_empty_allocs();
void test_collisions();
void test_harqs();
void test_sibs();
void run_tti(uint32_t tti_rx);
private:
void new_test_tti(uint32_t tti_);
void process_tti_args();
void before_sched();
void process_results();
void ack_txs();
};
void sched_tester::add_user(uint16_t rnti,
srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg,
srsenb::sched_interface::ue_cfg_t ue_cfg_)
{
ue_info info;
info.prach_tti = tti_data.tti_rx;
info.bearer_cfg = bearer_cfg;
info.user_cfg = ue_cfg_;
tester_ues.insert(std::make_pair(rnti, info));
if (ue_cfg(rnti, &ue_cfg_) != SRSLTE_SUCCESS) {
TestError("[TESTER] Registering new user rnti=0x%x to SCHED\n", rnti);
}
dl_sched_rar_info_t rar_info = {};
rar_info.prach_tti = tti_data.tti_rx;
rar_info.temp_crnti = rnti;
rar_info.msg3_size = 7;
dl_rach_info(rar_info);
// setup bearers
bearer_ue_cfg(rnti, 0, &bearer_cfg);
log_out.info("[TESTER] Adding user rnti=0x%x\n", rnti);
}
void sched_tester::rem_user(uint16_t rnti)
{
tester_ues.erase(rnti);
tti_data.ue_data.erase(rnti);
}
void sched_tester::new_test_tti(uint32_t tti_)
{
// NOTE: make a local copy, since some of these variables may be cleared during scheduling
tti_data.tti_rx = tti_;
tti_data.tti_tx_dl = TTI_TX(tti_);
tti_data.tti_tx_ul = TTI_RX_ACK(tti_);
tti_data.is_prach_tti_tx_ul = srslte_prach_tti_opportunity_config_fdd(cfg.prach_config, tti_data.tti_tx_ul, -1);
if (tti_data.tti_tx_ul > FDD_HARQ_DELAY_MS) {
tti_data.ul_sf_idx = (tti_data.tti_tx_ul - FDD_HARQ_DELAY_MS) % 10;
} else {
tti_data.ul_sf_idx = (tti_data.tti_tx_ul + 10240 - FDD_HARQ_DELAY_MS) % 10;
}
tti_data.ul_pending_msg3 = carrier_schedulers[0]->ra_sched_ptr->find_pending_msg3(tti_data.tti_tx_ul);
tti_data.current_cfi = sched_cfg.nof_ctrl_symbols;
tti_data.used_cce.resize(srslte_regs_pdcch_ncce(&regs, tti_data.current_cfi));
tti_data.used_cce.reset();
tti_data.ue_data.clear();
tti_data.total_ues = tester_user_results();
}
void sched_tester::process_tti_args()
{
// may add a new user
if (sim_args.tti_events[tti_data.tti_rx].new_user) {
CondError(!srslte_prach_tti_opportunity_config_fdd(cfg.prach_config, tti_data.tti_rx, -1),
"[TESTER] New user added in a non-PRACH TTI\n");
uint16_t rnti = sim_args.tti_events[tti_data.tti_rx].new_rnti;
add_user(rnti, sim_args.bearer_cfg, sim_args.ue_cfg);
}
// may remove an existing user
if (sim_args.tti_events[tti_data.tti_rx].rem_user) {
uint16_t rnti = sim_args.tti_events[tti_data.tti_rx].rem_rnti;
bearer_ue_rem(rnti, 0);
ue_rem(rnti);
rem_user(rnti);
log_out.info("[TESTER] Removing user rnti=0x%x\n", rnti);
}
// push UL SRs and DL packets
for (auto& e : sim_args.tti_events[tti_data.tti_rx].users) {
if (e.second.sr_data > 0) {
uint32_t tot_ul_data = ue_db[e.first].get_pending_ul_new_data(tti_data.tti_tx_ul) + e.second.sr_data;
uint32_t lcid = 0;
ul_bsr(e.first, lcid, tot_ul_data, true);
}
if (e.second.dl_data > 0) {
uint32_t lcid = 0;
// FIXME: Does it need TTI for checking pending data?
uint32_t tot_dl_data = ue_db[e.first].get_pending_dl_new_data(tti_data.tti_tx_dl) + e.second.dl_data;
dl_rlc_buffer_state(e.first, lcid, tot_dl_data, 0);
}
}
}
void sched_tester::before_sched()
{
// check pending data buffers
for (auto& it : ue_db) {
uint16_t rnti = it.first;
srsenb::sched_ue* user = &it.second;
tester_user_results d;
srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_data.tti_tx_ul);
d.ul_pending_data = get_ul_buffer(rnti);
// user->get_pending_ul_new_data(tti_data.tti_tx_ul) or hul->has_pending_retx(); // get_ul_buffer(rnti);
d.dl_pending_data = get_dl_buffer(rnti);
d.has_ul_retx = hul->has_pending_retx();
d.has_ul_tx = d.has_ul_retx or d.ul_pending_data > 0;
srsenb::dl_harq_proc* hdl = user->get_pending_dl_harq(tti_data.tti_tx_dl);
d.has_dl_retx = (hdl != nullptr) and hdl->has_pending_retx(0, tti_data.tti_tx_dl);
d.has_dl_tx = (hdl != nullptr) or (it.second.get_empty_dl_harq() != nullptr and d.dl_pending_data > 0);
d.has_ul_newtx = not d.has_ul_retx and d.ul_pending_data > 0;
tti_data.ue_data.insert(std::make_pair(rnti, d));
tti_data.total_ues.dl_pending_data += d.dl_pending_data;
tti_data.total_ues.ul_pending_data += d.ul_pending_data;
tti_data.total_ues.has_ul_tx |= d.has_ul_tx;
tti_data.total_ues.has_dl_tx |= d.has_dl_tx;
tti_data.total_ues.has_ul_newtx |= d.has_ul_newtx;
for (uint32_t i = 0; i < 2 * FDD_HARQ_DELAY_MS; ++i) {
const srsenb::dl_harq_proc* h = user->get_dl_harq(i);
tti_data.ue_data[rnti].dl_harqs[i] = *h;
}
// NOTE: ACK might have just cleared the harq for tti_data.tti_tx_ul
tti_data.ue_data[rnti].ul_harq = *user->get_ul_harq(tti_data.tti_tx_ul);
}
// TODO: Check whether pending pending_rar.rar_tti correspond to a prach_tti
}
void sched_tester::process_results()
{
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
uint16_t rnti = tti_data.sched_result_ul.pusch[i].dci.rnti;
tti_data.ue_data[rnti].ul_sched = &tti_data.sched_result_ul.pusch[i];
CondError(tester_ues.count(rnti) == 0,
"[TESTER] [%d] The user rnti=0x%x that no longer exists got allocated.\n",
tti_data.tti_rx,
rnti);
}
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) {
uint16_t rnti = tti_data.sched_result_dl.data[i].dci.rnti;
tti_data.ue_data[rnti].dl_sched = &tti_data.sched_result_dl.data[i];
CondError(tester_ues.count(rnti) == 0,
"[TESTER] [%d] The user rnti=0x%x that no longer exists got allocated.\n",
tti_data.tti_rx,
rnti);
}
test_tti_result();
test_ra();
test_collisions();
assert_no_empty_allocs();
test_harqs();
test_sibs();
}
void sched_tester::run_tti(uint32_t tti_rx)
{
new_test_tti(tti_rx);
log_out.info("[TESTER] ---- tti=%u | nof_ues=%lu ----\n", tti_rx, ue_db.size());
process_tti_args();
ack_txs();
before_sched();
dl_sched(tti_data.tti_tx_dl, &tti_data.sched_result_dl);
ul_sched(tti_data.tti_tx_ul, &tti_data.sched_result_ul);
process_results();
}
/**
* Tests whether the RAR and Msg3 were scheduled within the expected windows
*/
void sched_tester::test_ra()
{
uint32_t msg3_count = 0;
// Test if allocations only take place for users with pending data or in RAR
for (auto& iter : tti_data.ue_data) {
uint16_t rnti = iter.first;
sched_tester::ue_info& userinfo = tester_ues[rnti];
// Check whether RA has completed correctly
int prach_tti = userinfo.prach_tti;
if (userinfo.msg3_tti > prach_tti) { // Msg3 already scheduled
continue;
}
bool rar_not_sent = prach_tti >= userinfo.rar_tti;
uint32_t window[2] = {(uint32_t)prach_tti + 3, prach_tti + 3 + cfg.prach_rar_window};
if (rar_not_sent) {
CondError(tti_data.tti_tx_dl > window[1], "[TESTER] There was no RAR scheduled within the RAR Window\n");
if (tti_data.tti_tx_dl >= window[0]) {
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_rar_elems; ++i) {
for (uint32_t j = 0; j < tti_data.sched_result_dl.rar[i].nof_grants; ++j) {
if (tti_data.sched_result_dl.rar[i].msg3_grant[j].data.prach_tti + TX_DELAY == tti_data.tti_tx_dl) {
userinfo.rar_tti = tti_data.tti_tx_dl;
}
}
}
}
} else { // RAR completed, check for Msg3
uint32_t msg3_tti = (uint32_t)(userinfo.rar_tti + FDD_HARQ_DELAY_MS + MSG3_DELAY_MS) % 10240;
if (msg3_tti == tti_data.tti_tx_ul) {
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
if (tti_data.sched_result_ul.pusch[i].dci.rnti == rnti) {
CondError(tti_data.sched_result_ul.pusch[i].needs_pdcch,
"[TESTER] Msg3 allocations do not require PDCCH\n");
CondError(tti_data.ul_pending_msg3.rnti != rnti, "[TESTER] The UL pending msg3 RNTI did not match\n");
CondError(not tti_data.ul_pending_msg3.enabled, "[TESTER] The UL pending msg3 RNTI did not match\n");
userinfo.msg3_tti = tti_data.tti_tx_ul;
msg3_count++;
}
}
CondError(msg3_count == 0, "[TESTER] No UL msg3 allocation was made\n");
} else if (msg3_tti < tti_data.tti_tx_ul) {
TestError("[TESTER] No UL msg3 allocation was made\n");
}
}
}
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
msg3_count -= tti_data.sched_result_ul.pusch[i].needs_pdcch ? 0 : 1;
}
CondError(msg3_count > 0, "[TESTER] There are pending msg3 that do not belong to any active UE\n");
}
void sched_tester::assert_no_empty_allocs()
{
// Test if allocations only take place for users with pending data or in RAR
for (auto& iter : tti_data.ue_data) {
uint16_t rnti = iter.first;
// srsenb::sched_ue* user = &ue_db[rnti];
if (!iter.second.has_ul_tx and tti_data.ue_data[rnti].ul_sched != nullptr and
tti_data.ue_data[rnti].ul_sched->needs_pdcch) {
// FIXME: This test does not work for adaptive re-tx
TestError("[TESTER] There was a user without data that got allocated in UL\n");
}
// srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_data.tti_tx_ul);
iter.second.ul_retx_got_delayed = iter.second.has_ul_retx and iter.second.ul_harq.is_empty(0);
tti_data.total_ues.ul_retx_got_delayed |= iter.second.ul_retx_got_delayed;
// Retxs cannot give space to newtx allocations
CondError(
tti_data.total_ues.ul_retx_got_delayed, "[TESTER] There was a retx that was erased for user rnti=0x%x\n", rnti);
}
// There must be allocations if there is pending data/retxs.
bool no_dl_allocs = true;
for (auto& it : tti_data.ue_data) {
if (it.second.dl_sched != nullptr) {
no_dl_allocs = false;
}
}
// CondError(tti_data.total_ues.has_dl_tx and no_dl_allocs, "There was pending DL data but no user got allocated\n");
// FIXME: You have to verify if there is space for the retx since it is non-adaptive
}
/**
* Tests whether there were collisions in the DCI allocations
*/
void sched_tester::test_tti_result()
{
carrier_sched::tti_sched_result_t* tti_sched = carrier_schedulers[0]->get_tti_sched(tti_data.tti_rx);
// Helper Function: checks if there is any collision. If not, fills the mask
auto try_cce_fill = [&](const srslte_dci_location_t& dci_loc, const char* ch) {
uint32_t cce_start = dci_loc.ncce, cce_stop = dci_loc.ncce + (1u << dci_loc.L);
if (tti_data.used_cce.any(cce_start, cce_stop)) {
TestError("[TESTER] %s DCI collision between CCE positions (%u, %u)\n", ch, cce_start, cce_stop);
}
tti_data.used_cce.fill(cce_start, cce_stop);
};
/* verify there are no dci collisions for UL, DL data, BC, RAR */
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
const auto& pusch = tti_data.sched_result_ul.pusch[i];
CondError(pusch.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", pusch.tbs);
CondError(ue_db.count(pusch.dci.rnti) == 0, "The allocated rnti=0x%x does not exist\n", pusch.dci.rnti);
if (not pusch.needs_pdcch) {
// In case of non-adaptive retx or Msg3
continue;
}
CondError(pusch.dci.location.L == 0,
"[TESTER] Invalid aggregation level %d\n",
pusch.dci.location.L); // TODO: Extend this test
try_cce_fill(pusch.dci.location, "UL");
}
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) {
auto& data = tti_data.sched_result_dl.data[i];
try_cce_fill(data.dci.location, "DL data");
CondError(ue_db.count(data.dci.rnti) == 0, "Allocated rnti=0x%x that does not exist\n", data.dci.rnti);
}
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_bc_elems; ++i) {
auto& bc = tti_data.sched_result_dl.bc[i];
try_cce_fill(bc.dci.location, "DL BC");
if (bc.type == sched_interface::dl_sched_bc_t::BCCH) {
CondError(bc.index >= MAX_SIBS, "Invalid SIB idx=%d\n", bc.index + 1);
CondError(bc.tbs < cfg.sibs[bc.index].len,
"Allocated BC process with TBS=%d < sib_len=%d\n",
bc.tbs,
cfg.sibs[bc.index].len);
} else if (bc.type == sched_interface::dl_sched_bc_t::PCCH) {
CondError(bc.tbs == 0, "Allocated paging process with invalid TBS=%d\n", bc.tbs);
} else {
TestError("Invalid broadcast process id=%d\n", (int)bc.type);
}
}
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_rar_elems; ++i) {
const auto& rar = tti_data.sched_result_dl.rar[i];
try_cce_fill(rar.dci.location, "DL RAR");
CondError(rar.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", rar.tbs);
for (uint32_t j = 0; j < rar.nof_grants; ++j) {
const auto& msg3_grant = rar.msg3_grant[j];
const srsenb::ra_sched::pending_msg3_t& p =
carrier_schedulers[0]->ra_sched_ptr->find_pending_msg3(tti_sched->get_tti_tx_dl() + MSG3_DELAY_MS + TX_DELAY);
CondError(not p.enabled, "Pending Msg3 should have been set\n");
uint32_t rba = srslte_ra_type2_to_riv(p.L, p.n_prb, cfg.cell.nof_prb);
CondError(msg3_grant.grant.rba != rba, "Pending Msg3 RBA is not valid\n");
}
}
/* verify if sched_result "used_cce" coincide with sched "used_cce" */
auto* tti_alloc = carrier_schedulers[0]->get_tti_sched(tti_data.tti_rx);
if (tti_data.used_cce != tti_alloc->get_pdcch_mask()) {
std::string mask_str = tti_alloc->get_pdcch_mask().to_string();
TestError("[TESTER] The used_cce do not match: (%s!=%s)\n", mask_str.c_str(), tti_data.used_cce.to_hex().c_str());
}
// FIXME: Check postponed retxs
// typedef std::map<uint16_t, srsenb::sched_ue>::iterator it_t;
// // There must be allocations if there is pending data/retxs.
// if(total_ues.has_ul_tx and ul_sched_result.empty()) {
// for (it_t it = ue_db.begin(); it != ue_db.end(); ++it) {
// uint32_t aggr_level = it->second.get_aggr_level(srslte_dci_format_sizeof(SRSLTE_DCI_FORMAT0, cfg.cell.nof_prb,
// cfg.cell.nof_ports)); if (find_empty_dci(it->second.get_locations(current_cfi, sf_idx), aggr_level) > 0) {
// TestError("[%d] There was pending UL data and free CCEs, but no user got allocated\n", tti_data.tti_rx);
// }
// }
// }
}
void sched_tester::test_harqs()
{
/* check consistency of DL harq procedures and allocations */
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) {
const auto& data = tti_data.sched_result_dl.data[i];
uint32_t h_id = data.dci.pid;
uint16_t rnti = data.dci.rnti;
const srsenb::dl_harq_proc* h = ue_db[rnti].get_dl_harq(h_id);
CondError(h == nullptr, "[TESTER] scheduled DL harq pid=%d does not exist\n", h_id);
CondError(h->is_empty(), "[TESTER] Cannot schedule an empty harq proc\n");
CondError(h->get_tti() != tti_data.tti_tx_dl,
"[TESTER] The scheduled DL harq pid=%d does not a valid tti=%u\n",
h_id,
tti_data.tti_tx_dl);
CondError(h->get_n_cce() != data.dci.location.ncce, "[TESTER] Harq DCI location does not match with result\n");
if (tti_data.ue_data[rnti].dl_harqs[h_id].has_pending_retx(0, tti_data.tti_tx_dl)) { // retx
CondError(tti_data.ue_data[rnti].dl_harqs[h_id].nof_retx(0) + 1 != h->nof_retx(0),
"[TESTER] A dl harq of user rnti=0x%x was likely overwritten.\n",
rnti);
CondError(h->nof_retx(0) >= sim_args.ue_cfg.maxharq_tx,
"[TESTER] The number of retx=%d exceeded its max=%d\n",
h->nof_retx(0),
sim_args.ue_cfg.maxharq_tx);
} else { // newtx
CondError(h->nof_retx(0) != 0, "[TESTER] A new harq was scheduled but with invalid number of retxs\n");
}
}
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
const auto& pusch = tti_data.sched_result_ul.pusch[i];
uint16_t rnti = pusch.dci.rnti;
const auto& ue_data = tti_data.ue_data[rnti];
const srsenb::ul_harq_proc* h = ue_db[rnti].get_ul_harq(tti_data.tti_tx_ul);
CondError(h == nullptr or h->is_empty(), "[TESTER] scheduled UL harq does not exist or is empty\n");
CondError(h->get_tti() != tti_data.tti_tx_ul,
"[TESTER] The scheduled UL harq does not a valid tti=%u\n",
tti_data.tti_tx_ul);
CondError(h->has_pending_ack(), "[TESTER] At the end of the TTI, there shouldnt be any pending ACKs\n");
if (h->has_pending_retx()) {
// retx
CondError(ue_data.ul_harq.is_empty(0), "[TESTER] reTx in an UL harq that was empty\n");
CondError(h->nof_retx(0) != ue_data.ul_harq.nof_retx(0) + 1,
"[TESTER] A retx UL harq was scheduled but with invalid number of retxs\n");
CondError(h->is_adaptive_retx() and not pusch.needs_pdcch, "[TESTER] Adaptive retxs need PDCCH alloc\n");
} else {
CondError(h->nof_retx(0) != 0, "[TESTER] A new harq was scheduled but with invalid number of retxs\n");
CondError(not ue_data.ul_harq.is_empty(0), "[TESTER] UL new tx in a UL harq that was not empty\n");
}
}
/* Check PHICH allocations */
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_phich_elems; ++i) {
const auto& phich = tti_data.sched_result_ul.phich[i];
CondError(tti_data.ue_data.count(phich.rnti) == 0, "[TESTER] Allocated PHICH rnti no longer exists\n");
const auto& hprev = tti_data.ue_data[phich.rnti].ul_harq;
const auto* h = ue_db[phich.rnti].get_ul_harq(tti_data.tti_tx_ul);
CondError(not hprev.has_pending_ack(), "[TESTER] Alloc PHICH did not have any pending ack\n");
bool maxretx_flag = hprev.nof_retx(0) + 1 >= hprev.max_nof_retx();
if (phich.phich == sched_interface::ul_sched_phich_t::ACK) {
CondError(!hprev.is_empty(), "[TESTER] ack phich for UL harq that is not empty\n");
} else {
CondError(h->get_pending_data() == 0 and !maxretx_flag, "[TESTER] NACKed harq has no pending data\n");
}
}
for (const auto& ue : ue_db) {
const auto& hprev = tti_data.ue_data[ue.first].ul_harq;
if (not hprev.has_pending_ack()) {
continue;
}
uint32_t i = 0;
for (; i < tti_data.sched_result_ul.nof_phich_elems; ++i) {
const auto& phich = tti_data.sched_result_ul.phich[i];
if (phich.rnti == ue.first) {
break;
}
}
CondError(i == tti_data.sched_result_ul.nof_phich_elems,
"[TESTER] harq had pending ack but no phich was allocked\n");
}
// schedule future acks
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) {
ack_info_t ack_data;
ack_data.rnti = tti_data.sched_result_dl.data[i].dci.rnti;
ack_data.tti = FDD_HARQ_DELAY_MS + tti_data.tti_tx_dl;
const srsenb::dl_harq_proc* dl_h = ue_db[ack_data.rnti].get_dl_harq(tti_data.sched_result_dl.data[i].dci.pid);
ack_data.dl_harq = *dl_h;
if (ack_data.dl_harq.nof_retx(0) == 0) {
ack_data.dl_ack = randf() > sim_args.P_retx;
} else { // always ack after three retxs
ack_data.dl_ack = ack_data.dl_harq.nof_retx(0) == 3;
}
// Remove harq from the ack list if there was a harq rewrite
ack_it_t it = to_ack.begin();
while (it != to_ack.end() and it->first < ack_data.tti) {
if (it->second.rnti == ack_data.rnti and it->second.dl_harq.get_id() == ack_data.dl_harq.get_id()) {
CondError(it->second.tti + 2 * FDD_HARQ_DELAY_MS > ack_data.tti,
"[TESTER] The retx dl harq id=%d was transmitted too soon\n",
ack_data.dl_harq.get_id());
ack_it_t toerase_it = it++;
to_ack.erase(toerase_it);
continue;
}
++it;
}
// add new ack to the list
to_ack.insert(std::make_pair(ack_data.tti, ack_data));
}
/* Schedule UL ACKs */
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
const auto& pusch = tti_data.sched_result_ul.pusch[i];
ul_ack_info_t ack_data;
ack_data.rnti = pusch.dci.rnti;
ack_data.ul_harq = *ue_db[ack_data.rnti].get_ul_harq(tti_data.tti_tx_ul);
ack_data.tti_tx_ul = tti_data.tti_tx_ul;
ack_data.tti_ack = tti_data.tti_tx_ul + FDD_HARQ_DELAY_MS;
if (ack_data.ul_harq.nof_retx(0) == 0) {
ack_data.ack = randf() > sim_args.P_retx;
} else {
ack_data.ack = ack_data.ul_harq.nof_retx(0) == 3;
}
to_ul_ack.insert(std::make_pair(ack_data.tti_tx_ul, ack_data));
}
// // Check whether some pids got old
// for (auto& user : ue_db) {
// for (int i = 0; i < 2 * FDD_HARQ_DELAY_MS; i++) {
// if (not(user.second.get_dl_harq(i)->is_empty(0) and user.second.get_dl_harq(1))) {
// if (srslte_tti_interval(tti_data.tti_tx_dl, user.second.get_dl_harq(i)->get_tti()) > 49) {
// TestError("[TESTER] The pid=%d for rnti=0x%x got old.\n", user.second.get_dl_harq(i)->get_id(),
// user.first);
// }
// }
// }
// }
}
void sched_tester::test_sibs()
{
uint32_t sfn = tti_data.tti_tx_dl / 10;
uint32_t sf_idx = TTI_TX(tti_data.tti_rx) % 10;
bool sib1_present = ((sfn % 2) == 0) and sf_idx == 5;
using bc_elem = sched_interface::dl_sched_bc_t;
bc_elem* bc_begin = &tti_data.sched_result_dl.bc[0];
bc_elem* bc_end = &tti_data.sched_result_dl.bc[tti_data.sched_result_dl.nof_bc_elems];
/* Test if SIB1 was correctly scheduled */
if (sib1_present) {
auto it = std::find_if(bc_begin, bc_end, [](bc_elem& elem) { return elem.index == 0; });
CondError(it == bc_end, "Failed to allocate SIB1 in even sfn, sf_idx==5\n");
}
/* Test if any SIB was scheduled outside of its window */
for (bc_elem* bc = bc_begin; bc != bc_end; ++bc) {
if (bc->index == 0) {
continue;
}
uint32_t x = (bc->index - 1) * cfg.si_window_ms;
uint32_t sf = x % 10;
uint32_t sfn_start = sfn;
while ((sfn_start % cfg.sibs[bc->index].period_rf) != x / 10) {
sfn_start--;
}
uint32_t win_start = sfn_start * 10 + sf;
uint32_t win_end = win_start + cfg.si_window_ms;
CondError(tti_data.tti_tx_dl < win_start or tti_data.tti_tx_dl > win_end,
"Scheduled SIB is outside of its SIB window\n");
}
}
void sched_tester::test_collisions()
{
carrier_sched::tti_sched_result_t* tti_sched = carrier_schedulers[0]->get_tti_sched(tti_data.tti_rx);
srsenb::prbmask_t ul_allocs(cfg.cell.nof_prb);
// Helper function to fill RBG mask
auto try_ul_fill = [&](srsenb::ul_harq_proc::ul_alloc_t alloc, const char* ch_str, bool strict = true) {
CondError((alloc.RB_start + alloc.L) > cfg.cell.nof_prb,
"[TESTER] Allocated RBs (%d,%d) out of bounds\n",
alloc.RB_start,
alloc.RB_start + alloc.L);
CondError(alloc.L == 0, "[TESTER] Allocations must have at least one PRB\n");
if (strict and ul_allocs.any(alloc.RB_start, alloc.RB_start + alloc.L)) {
TestError("[TESTER] There is a collision of %s alloc=(%d,%d) and cumulative_mask=%s\n",
ch_str,
alloc.RB_start,
alloc.RB_start + alloc.L,
ul_allocs.to_hex().c_str());
}
ul_allocs.fill(alloc.RB_start, alloc.RB_start + alloc.L, true);
};
/* TEST: Check if there is space for PRACH */
if (tti_data.is_prach_tti_tx_ul) {
try_ul_fill({cfg.prach_freq_offset, 6}, "PRACH");
}
/* TEST: check collisions in the UL PUSCH and PUCCH */
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
uint32_t L, RBstart;
srslte_ra_type2_from_riv(
tti_data.sched_result_ul.pusch[i].dci.type2_alloc.riv, &L, &RBstart, cfg.cell.nof_prb, cfg.cell.nof_prb);
try_ul_fill({RBstart, L}, "PUSCH");
ue_stats[tti_data.sched_result_ul.pusch[i].dci.rnti].nof_ul_rbs += L;
}
/* TEST: check collisions with PUCCH */
bool strict = cfg.cell.nof_prb != 6 or (not tti_data.is_prach_tti_tx_ul and not tti_data.ul_pending_msg3.enabled);
try_ul_fill({0, (uint32_t)cfg.nrb_pucch}, "PUCCH", strict);
try_ul_fill({cfg.cell.nof_prb - cfg.nrb_pucch, (uint32_t)cfg.nrb_pucch}, "PUCCH", strict);
/* TEST: Check if there is a collision with Msg3 or Msg3 alloc data is not consistent */
if (tti_data.ul_pending_msg3.enabled) {
bool passed = false;
for (uint32_t i = 0; i < tti_data.sched_result_ul.nof_dci_elems; ++i) {
if (tti_data.ul_pending_msg3.rnti == tti_data.sched_result_ul.pusch[i].dci.rnti) {
CondError(passed, "[TESTER] There can only be one msg3 allocation per UE\n");
CondError(tti_data.sched_result_ul.pusch[i].needs_pdcch, "[TESTER] Msg3 allocations do not need PDCCH DCI\n");
uint32_t L, RBstart;
srslte_ra_type2_from_riv(
tti_data.sched_result_ul.pusch[i].dci.type2_alloc.riv, &L, &RBstart, cfg.cell.nof_prb, cfg.cell.nof_prb);
if (RBstart != tti_data.ul_pending_msg3.n_prb or L != tti_data.ul_pending_msg3.L) {
TestError("[TESTER] The Msg3 allocation does not coincide with the expected.\n");
}
passed = true;
}
}
CondError(not passed, "[TESTER] No Msg3 allocation was found in the sched_result\n");
}
/* TEST: check whether cumulative UL PRB masks coincide */
if (ul_allocs != tti_sched->get_ul_mask()) {
TestError("[TESTER] The UL PRB mask and the scheduler result UL mask are not consistent\n");
}
srslte::bounded_bitset<100, true> dl_allocs(cfg.cell.nof_prb), alloc_mask(cfg.cell.nof_prb);
srslte_dl_sf_cfg_t dl_sf;
ZERO_OBJECT(dl_sf);
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_data_elems; ++i) {
alloc_mask.reset();
srslte_pdsch_grant_t grant;
CondError(srslte_ra_dl_dci_to_grant(
&cfg.cell, &dl_sf, SRSLTE_TM1, false, &tti_data.sched_result_dl.data[i].dci, &grant) == SRSLTE_ERROR,
"Failed to decode PDSCH grant\n");
for (uint32_t j = 0; j < alloc_mask.size(); ++j) {
if (grant.prb_idx[0][j]) {
alloc_mask.set(j);
} else {
alloc_mask.reset(j);
}
}
if ((dl_allocs & alloc_mask).any()) {
TestError("[TESTER] Detected collision in the DL data allocation (%s intersects %s)\n",
dl_allocs.to_string().c_str(),
alloc_mask.to_string().c_str());
}
dl_allocs |= alloc_mask;
ue_stats[tti_data.sched_result_dl.data[i].dci.rnti].nof_dl_rbs += alloc_mask.count();
}
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_bc_elems; ++i) {
srslte_pdsch_grant_t grant;
CondError(srslte_ra_dl_dci_to_grant(
&cfg.cell, &dl_sf, SRSLTE_TM1, false, &tti_data.sched_result_dl.bc[i].dci, &grant) == SRSLTE_ERROR,
"Failed to decode PDSCH grant\n");
alloc_mask.reset();
for (uint32_t j = 0; j < alloc_mask.size(); ++j) {
if (grant.prb_idx[0][j]) {
alloc_mask.set(j);
}
}
if ((dl_allocs & alloc_mask).any()) {
TestError("[TESTER] Detected collision in the DL bc allocation (%s intersects %s)\n",
dl_allocs.to_string().c_str(),
alloc_mask.to_string().c_str());
}
dl_allocs |= alloc_mask;
}
for (uint32_t i = 0; i < tti_data.sched_result_dl.nof_rar_elems; ++i) {
alloc_mask.reset();
srslte_pdsch_grant_t grant;
CondError(srslte_ra_dl_dci_to_grant(
&cfg.cell, &dl_sf, SRSLTE_TM1, false, &tti_data.sched_result_dl.rar[i].dci, &grant) == SRSLTE_ERROR,
"Failed to decode PDSCH grant\n");
for (uint32_t j = 0; j < alloc_mask.size(); ++j) {
if (grant.prb_idx[0][j]) {
alloc_mask.set(j);
} else {
alloc_mask.reset(j);
}
}
if ((dl_allocs & alloc_mask).any()) {
TestError("[TESTER] Detected collision in the DL RAR allocation (%s intersects %s)\n",
dl_allocs.to_string().c_str(),
alloc_mask.to_string().c_str());
}
dl_allocs |= alloc_mask;
}
// TEST: check if resulting DL mask is equal to scheduler internal DL mask
uint32_t P = srslte_ra_type0_P(cfg.cell.nof_prb);
nof_rbgs = srslte::ceil_div(cfg.cell.nof_prb, P);
srsenb::rbgmask_t rbgmask(nof_rbgs);
srslte::bounded_bitset<100, true> rev_alloc = ~dl_allocs;
for (uint32_t i = 0; i < nof_rbgs; ++i) {
uint32_t lim = SRSLTE_MIN((i + 1) * P, dl_allocs.size());
bool val = dl_allocs.any(i * P, lim);
CondError(rev_alloc.any(i * P, lim) and val, "[TESTER] No holes can be left in an RBG\n");
if (val) {
rbgmask.set(i);
} else {
rbgmask.reset(i);
}
}
if (rbgmask != carrier_schedulers[0]->get_tti_sched(tti_data.tti_rx)->get_dl_mask()) {
TestError("[TESTER] The UL PRB mask and the scheduler result UL mask are not consistent\n");
}
}
void sched_tester::ack_txs()
{
/* check if user was removed. If so, clean respective acks */
erase_if(to_ack,
[this](std::pair<const uint32_t, ack_info_t>& elem) { return this->ue_db.count(elem.second.rnti) == 0; });
erase_if(to_ul_ack,
[this](std::pair<const uint32_t, ul_ack_info_t>& elem) { return this->ue_db.count(elem.second.rnti) == 0; });
/* Ack DL HARQs */
for (const auto& ack_it : to_ack) {
if (ack_it.second.tti != tti_data.tti_rx) {
continue;
}
srsenb::dl_harq_proc* h = ue_db[ack_it.second.rnti].get_dl_harq(ack_it.second.dl_harq.get_id());
const srsenb::dl_harq_proc& hack = ack_it.second.dl_harq;
CondError(hack.is_empty(), "[TESTER] The acked DL harq was not active\n");
bool ret = false;
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; ++tb) {
if (ack_it.second.dl_harq.is_empty(tb)) {
continue;
}
ret |= dl_ack_info(tti_data.tti_rx, ack_it.second.rnti, tb, ack_it.second.dl_ack) > 0;
}
CondError(not ret, "[TESTER] The dl harq proc that was acked does not exist\n");
if (ack_it.second.dl_ack) {
CondError(!h->is_empty(), "[TESTER] ACKed dl harq was not emptied\n");
CondError(h->has_pending_retx(0, tti_data.tti_tx_dl), "[TESTER] ACKed dl harq still has pending retx\n");
log_out.info("[TESTER] DL ACK tti=%u rnti=0x%x pid=%d\n",
tti_data.tti_rx,
ack_it.second.rnti,
ack_it.second.dl_harq.get_id());
} else {
CondError(h->is_empty() and hack.nof_retx(0) + 1 < hack.max_nof_retx(), "[TESTER] NACKed DL harq got emptied\n");
}
}
/* Ack UL HARQs */
for (const auto& ack_it : to_ul_ack) {
if (ack_it.first != tti_data.tti_rx) {
continue;
}
srsenb::ul_harq_proc* h = ue_db[ack_it.second.rnti].get_ul_harq(tti_data.tti_rx);
const srsenb::ul_harq_proc& hack = ack_it.second.ul_harq;
CondError(h == nullptr or h->get_tti() != hack.get_tti(), "[TESTER] UL Harq TTI does not match the ACK TTI\n");
CondError(h->is_empty(0), "[TESTER] The acked UL harq is not active\n");
CondError(hack.is_empty(0), "[TESTER] The acked UL harq was not active\n");
ul_crc_info(tti_data.tti_rx, ack_it.second.rnti, ack_it.second.ack);
CondError(!h->get_pending_data(), "[TESTER] UL harq lost its pending data\n");
CondError(!h->has_pending_ack(), "[TESTER] ACK/NACKed UL harq should have a pending ACK\n");
if (ack_it.second.ack) {
CondError(!h->is_empty(), "[TESTER] ACKed UL harq did not get emptied\n");
CondError(h->has_pending_retx(), "[TESTER] ACKed UL harq still has pending retx\n");
log_out.info("[TESTER] UL ACK tti=%u rnti=0x%x pid=%d\n", tti_data.tti_rx, ack_it.second.rnti, hack.get_id());
} else {
// NACK
CondError(!h->is_empty() and !h->has_pending_retx(), "[TESTER] If NACKed, UL harq has to have pending retx\n");
CondError(h->is_empty() and hack.nof_retx(0) + 1 < hack.max_nof_retx(),
"[TESTER] Nacked UL harq did get emptied\n");
}
}
// erase processed acks
to_ack.erase(tti_data.tti_rx);
to_ul_ack.erase(tti_data.tti_rx);
// bool ack = true; //(tti_data.tti_rx % 3) == 0;
// if (tti_data.tti_rx >= FDD_HARQ_DELAY_MS) {
// for (auto it = ue_db.begin(); it != ue_db.end(); ++it) {
// uint16_t rnti = it->first;
// srsenb::ul_harq_proc* h = ue_db[rnti].get_ul_harq(tti_data.tti_rx);
// if (h != nullptr and not h->is_empty()) {
// ul_crc_info(tti_data.tti_rx, rnti, ack);
// }
// }
// }
}
srsenb::sched_interface::cell_cfg_t generate_cell_cfg()
{
srsenb::sched_interface::cell_cfg_t cell_cfg;
srslte_cell_t& cell_cfg_phy = cell_cfg.cell;
bzero(&cell_cfg, sizeof(srsenb::sched_interface::cell_cfg_t));
/* Set PHY cell configuration */
cell_cfg_phy.id = 1;
cell_cfg_phy.cp = SRSLTE_CP_NORM;
cell_cfg_phy.nof_ports = 1;
cell_cfg_phy.nof_prb = 100;
cell_cfg_phy.phich_length = SRSLTE_PHICH_NORM;
cell_cfg_phy.phich_resources = SRSLTE_PHICH_R_1;
cell_cfg.sibs[0].len = 18;
cell_cfg.sibs[0].period_rf = 8;
cell_cfg.sibs[1].len = 41;
cell_cfg.sibs[1].period_rf = 16;
cell_cfg.si_window_ms = 40;
cell_cfg.nrb_pucch = 2;
cell_cfg.prach_freq_offset = (cell_cfg_phy.nof_prb == 6) ? 0 : 2;
cell_cfg.prach_rar_window = 3;
cell_cfg.maxharq_msg3tx = 3;
return cell_cfg;
}
void test_scheduler_rand(srsenb::sched_interface::cell_cfg_t cell_cfg, const sched_sim_args& args)
{
// Create classes
sched_tester tester;
srsenb::sched my_sched;
srsenb::dl_metric_rr dl_metric;
srsenb::ul_metric_rr ul_metric;
log_out.set_level(srslte::LOG_LEVEL_INFO);
tester.sim_args = args;
// srslte_cell_t& cell_cfg_phy = cell_cfg.cell;
// srsenb::sched_interface::dl_sched_res_t& sched_result_dl = tester.tti_data.sched_result_dl;
// srsenb::sched_interface::ul_sched_res_t& sched_result_ul = tester.tti_data.sched_result_ul;
tester.init(nullptr, &log_out);
tester.set_metric(&dl_metric, &ul_metric);
tester.cell_cfg(&cell_cfg);
bool running = true;
uint32_t tti = 0;
uint32_t nof_ttis = 0;
while (running) {
if (nof_ttis > args.nof_ttis) {
running = false;
}
log_out.step(tti);
tester.run_tti(tti);
nof_ttis++;
tti = (tti + 1) % 10240;
}
}
sched_sim_args rand_sim_params(const srsenb::sched_interface::cell_cfg_t& cell_cfg, uint32_t nof_ttis)
{
sched_sim_args sim_args;
std::vector<std::vector<uint32_t> > current_rntis;
uint16_t rnti_start = 70;
uint32_t max_conn_dur = 10000, min_conn_dur = 5000;
float P_ul_sr = randf() * 0.5, P_dl = randf() * 0.5;
float P_prach = 0.99f; // 0.1f + randf()*0.3f;
float ul_sr_exps[] = {1, 4}; // log rand
float dl_data_exps[] = {1, 4}; // log rand
uint32_t max_nof_users = 500;
std::uniform_int_distribution<> connection_dur_dist(min_conn_dur, max_conn_dur);
bzero(&sim_args.ue_cfg, sizeof(srsenb::sched_interface::ue_cfg_t));
sim_args.ue_cfg.aperiodic_cqi_period = 40;
sim_args.ue_cfg.maxharq_tx = 5;
bzero(&sim_args.bearer_cfg, sizeof(srsenb::sched_interface::ue_bearer_cfg_t));
sim_args.bearer_cfg.direction = srsenb::sched_interface::ue_bearer_cfg_t::BOTH;
sim_args.nof_ttis = nof_ttis;
sim_args.P_retx = 0.1;
sim_args.tti_events.resize(sim_args.nof_ttis);
for (uint32_t tti = 0; tti < sim_args.tti_events.size(); ++tti) {
if (not current_rntis.empty()) {
// may rem user
for (uint32_t i = 0; i < current_rntis.size(); ++i) {
if (current_rntis[i][2] + current_rntis[i][1] <= tti) {
std::vector<std::vector<uint32_t> >::iterator it_to_rem = current_rntis.begin() + i;
sim_args.tti_events[tti].rem_user = true;
sim_args.tti_events[tti].rem_rnti = (*it_to_rem)[0];
current_rntis.erase(it_to_rem);
}
}
for (auto& current_rnti : current_rntis) {
uint32_t rnti = current_rnti[0];
if (randf() < P_ul_sr) {
float exp = ul_sr_exps[0] + randf() * (ul_sr_exps[1] - ul_sr_exps[0]);
sim_args.tti_events[tti].users[rnti].sr_data = (uint32_t)pow(10, exp);
}
if (randf() < P_dl) {
float exp = dl_data_exps[0] + randf() * (dl_data_exps[1] - dl_data_exps[0]);
sim_args.tti_events[tti].users[rnti].dl_data = (uint32_t)pow(10, exp);
}
}
}
// may add new user (For now, we only support one UE per PRACH)
bool is_prach_tti = srslte_prach_tti_opportunity_config_fdd(cell_cfg.prach_config, tti, -1);
if (is_prach_tti and current_rntis.size() < max_nof_users and randf() < P_prach) {
std::vector<uint32_t> elem(3);
elem[0] = rnti_start;
elem[1] = tti;
elem[2] = connection_dur_dist(rand_gen);
current_rntis.push_back(elem);
sim_args.tti_events[tti].new_user = true;
sim_args.tti_events[tti].new_rnti = rnti_start++;
}
}
return sim_args;
}
int main()
{
printf("[TESTER] This is the chosen seed: %u\n", seed);
/* initialize random seed: */
uint32_t N_runs = 1, nof_ttis = 10240 + 10;
for (uint32_t n = 0; n < N_runs; ++n) {
printf("Sim run number: %u\n", n + 1);
srsenb::sched_interface::cell_cfg_t cell_cfg = generate_cell_cfg();
sched_sim_args sim_args = rand_sim_params(cell_cfg, nof_ttis);
test_scheduler_rand(cell_cfg, sim_args);
}
// // low UL-Txs
// printf("\n\n********* New Test ***********\n");
// sim_args.P_sr = 0.05;
// test_scheduler_rand(sim_args);
printf("[TESTER] Number of assertion warnings: %u\n", warn_counter);
printf("[TESTER] Number of assertion errors: %u\n", err_counter);
printf("[TESTER] This was the chosen seed: %u\n", seed);
}