You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1149 lines
39 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include <assert.h>
#include <math.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/time.h>
#include <unistd.h>
#include "srsran/common/crash_handler.h"
#include "srsran/common/gen_mch_tables.h"
#include "srsran/phy/io/filesink.h"
#include "srsran/srsran.h"
#define ENABLE_AGC_DEFAULT
#define MAX_SRATE_DELTA 2 // allowable delta (in Hz) between requested and actual sample rate
#ifndef DISABLE_RF
#include "srsran/phy/rf/rf.h"
#include "srsran/phy/rf/rf_utils.h"
cell_search_cfg_t cell_detect_config = {.max_frames_pbch = SRSRAN_DEFAULT_MAX_FRAMES_PBCH,
.max_frames_pss = SRSRAN_DEFAULT_MAX_FRAMES_PSS,
.nof_valid_pss_frames = SRSRAN_DEFAULT_NOF_VALID_PSS_FRAMES,
.init_agc = 0,
.force_tdd = false};
#else
#pragma message "Compiling pdsch_ue with no RF support"
#endif
//#define STDOUT_COMPACT
#ifdef ENABLE_GUI
#include "srsgui/srsgui.h"
void init_plots();
pthread_t plot_thread;
sem_t plot_sem;
uint32_t plot_sf_idx = 0;
bool plot_track = true;
bool enable_mbsfn_plot = false;
#endif /* ENABLE_GUI */
char* output_file_name;
//#define PRINT_CHANGE_SCHEDULING
//#define CORRECT_SAMPLE_OFFSET
/**********************************************************************
* Program arguments processing
***********************************************************************/
typedef struct {
int nof_subframes;
int cpu_affinity;
bool disable_plots;
bool disable_plots_except_constellation;
bool disable_cfo;
uint32_t time_offset;
int force_N_id_2;
uint16_t rnti;
char* input_file_name;
int file_offset_time;
float file_offset_freq;
uint32_t file_nof_prb;
uint32_t file_nof_ports;
uint32_t file_cell_id;
bool enable_cfo_ref;
char* estimator_alg;
char* rf_dev;
char* rf_args;
uint32_t rf_nof_rx_ant;
double rf_freq;
float rf_gain;
int net_port;
char* net_address;
int net_port_signal;
char* net_address_signal;
int decimate;
int32_t mbsfn_area_id;
uint8_t non_mbsfn_region;
uint8_t mbsfn_sf_mask;
int tdd_special_sf;
int sf_config;
int verbose;
bool enable_256qam;
bool use_standard_lte_rate;
} prog_args_t;
void args_default(prog_args_t* args)
{
args->disable_plots = false;
args->disable_plots_except_constellation = false;
args->nof_subframes = -1;
args->rnti = SRSRAN_SIRNTI;
args->force_N_id_2 = -1; // Pick the best
args->tdd_special_sf = -1;
args->sf_config = -1;
args->input_file_name = NULL;
args->disable_cfo = false;
args->time_offset = 0;
args->file_nof_prb = 25;
args->file_nof_ports = 1;
args->file_cell_id = 0;
args->file_offset_time = 0;
args->file_offset_freq = 0;
args->rf_dev = "";
args->rf_args = "";
args->rf_freq = -1.0;
args->rf_nof_rx_ant = 1;
args->enable_cfo_ref = false;
args->estimator_alg = "interpolate";
args->enable_256qam = false;
#ifdef ENABLE_AGC_DEFAULT
args->rf_gain = -1.0;
#else
args->rf_gain = 50.0;
#endif
args->net_port = -1;
args->net_address = "127.0.0.1";
args->net_port_signal = -1;
args->net_address_signal = "127.0.0.1";
args->decimate = 0;
args->cpu_affinity = -1;
args->mbsfn_area_id = -1;
args->non_mbsfn_region = 2;
args->mbsfn_sf_mask = 32;
}
void usage(prog_args_t* args, char* prog)
{
printf("Usage: %s [adgpPoOcildFRDnruMNvTG] -f rx_frequency (in Hz) | -i input_file\n", prog);
#ifndef DISABLE_RF
printf("\t-I RF dev [Default %s]\n", args->rf_dev);
printf("\t-a RF args [Default %s]\n", args->rf_args);
printf("\t-A Number of RX antennas [Default %d]\n", args->rf_nof_rx_ant);
#ifdef ENABLE_AGC_DEFAULT
printf("\t-g RF fix RX gain [Default AGC]\n");
#else
printf("\t-g Set RX gain [Default %.1f dB]\n", args->rf_gain);
#endif
#else
printf("\t RF is disabled.\n");
#endif
printf("\t-i input_file [Default use RF board]\n");
printf("\t-o offset frequency correction (in Hz) for input file [Default %.1f Hz]\n", args->file_offset_freq);
printf("\t-O offset samples for input file [Default %d]\n", args->file_offset_time);
printf("\t-p nof_prb for input file [Default %d]\n", args->file_nof_prb);
printf("\t-P nof_ports for input file [Default %d]\n", args->file_nof_ports);
printf("\t-c cell_id for input file [Default %d]\n", args->file_cell_id);
printf("\t-r RNTI in Hex [Default 0x%x]\n", args->rnti);
printf("\t-l Force N_id_2 [Default best]\n");
printf("\t-C Disable CFO correction [Default %s]\n", args->disable_cfo ? "Disabled" : "Enabled");
printf("\t-F Enable RS-based CFO correction [Default %s]\n", !args->enable_cfo_ref ? "Disabled" : "Enabled");
printf("\t-R Channel estimates algorithm (average, interpolate, wiener) [Default %s]\n", args->estimator_alg);
printf("\t-t Add time offset [Default %d]\n", args->time_offset);
printf("\t-T Set TDD special subframe configuration [Default %d]\n", args->tdd_special_sf);
printf("\t-G Set TDD uplink/downlink configuration [Default %d]\n", args->sf_config);
#ifdef ENABLE_GUI
printf("\t-d disable plots [Default enabled]\n");
printf("\t-D disable all but constellation plots [Default enabled]\n");
#else /* ENABLE_GUI */
printf("\t plots are disabled. Graphics library not available\n");
#endif /* ENABLE_GUI */
printf("\t-y set the cpu affinity mask [Default %d] \n ", args->cpu_affinity);
printf("\t-n nof_subframes [Default %d]\n", args->nof_subframes);
printf("\t-s remote UDP port to send input signal (-1 does nothing with it) [Default %d]\n", args->net_port_signal);
printf("\t-S remote UDP address to send input signal [Default %s]\n", args->net_address_signal);
printf("\t-u remote TCP port to send data (-1 does nothing with it) [Default %d]\n", args->net_port);
printf("\t-U remote TCP address to send data [Default %s]\n", args->net_address);
printf("\t-M MBSFN area id [Default %d]\n", args->mbsfn_area_id);
printf("\t-N Non-MBSFN region [Default %d]\n", args->non_mbsfn_region);
printf("\t-q Enable/Disable 256QAM modulation (default %s)\n", args->enable_256qam ? "enabled" : "disabled");
printf("\t-Q Use standard LTE sample rates (default %s)\n", args->use_standard_lte_rate ? "enabled" : "disabled");
printf("\t-v [set srsran_verbose to debug, default none]\n");
}
void parse_args(prog_args_t* args, int argc, char** argv)
{
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "adAogliIpPcOCtdDFRqnvrfuUsSZyWMNBTGQ")) != -1) {
switch (opt) {
case 'i':
args->input_file_name = argv[optind];
break;
case 'p':
args->file_nof_prb = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'P':
args->file_nof_ports = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'o':
args->file_offset_freq = strtof(argv[optind], NULL);
break;
case 'O':
args->file_offset_time = (int)strtol(argv[optind], NULL, 10);
break;
case 'c':
args->file_cell_id = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'I':
args->rf_dev = argv[optind];
break;
case 'a':
args->rf_args = argv[optind];
break;
case 'A':
args->rf_nof_rx_ant = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'g':
args->rf_gain = strtof(argv[optind], NULL);
break;
case 'C':
args->disable_cfo = true;
break;
case 'F':
args->enable_cfo_ref = true;
break;
case 'R':
args->estimator_alg = argv[optind];
break;
case 't':
args->time_offset = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'f':
args->rf_freq = strtod(argv[optind], NULL);
break;
case 'T':
args->tdd_special_sf = (int)strtol(argv[optind], NULL, 10);
break;
case 'G':
args->sf_config = (int)strtol(argv[optind], NULL, 10);
break;
case 'n':
args->nof_subframes = (int)strtol(argv[optind], NULL, 10);
break;
case 'r':
args->rnti = strtol(argv[optind], NULL, 16);
break;
case 'l':
args->force_N_id_2 = (int)strtol(argv[optind], NULL, 10);
break;
case 'u':
args->net_port = (int)strtol(argv[optind], NULL, 10);
break;
case 'U':
args->net_address = argv[optind];
break;
case 's':
args->net_port_signal = (int)strtol(argv[optind], NULL, 10);
break;
case 'S':
args->net_address_signal = argv[optind];
break;
case 'd':
args->disable_plots = true;
break;
case 'D':
args->disable_plots_except_constellation = true;
break;
case 'v':
increase_srsran_verbose_level();
args->verbose = get_srsran_verbose_level();
break;
case 'Z':
args->decimate = (int)strtol(argv[optind], NULL, 10);
break;
case 'y':
args->cpu_affinity = (int)strtol(argv[optind], NULL, 10);
break;
case 'W':
output_file_name = argv[optind];
break;
case 'M':
args->mbsfn_area_id = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'N':
args->non_mbsfn_region = (uint8_t)strtol(argv[optind], NULL, 10);
break;
case 'B':
args->mbsfn_sf_mask = (uint8_t)strtol(argv[optind], NULL, 10);
break;
case 'q':
args->enable_256qam ^= true;
break;
case 'Q':
args->use_standard_lte_rate ^= true;
break;
default:
usage(args, argv[0]);
exit(-1);
}
}
if (args->rf_freq < 0 && args->input_file_name == NULL) {
usage(args, argv[0]);
exit(-1);
}
}
/**********************************************************************/
uint8_t* data[SRSRAN_MAX_CODEWORDS];
bool go_exit = false;
void sig_int_handler(int signo)
{
printf("SIGINT received. Exiting...\n");
if (signo == SIGINT) {
go_exit = true;
} else if (signo == SIGSEGV) {
exit(1);
}
}
cf_t* sf_buffer[SRSRAN_MAX_PORTS] = {NULL};
#ifndef DISABLE_RF
int srsran_rf_recv_wrapper(void* h, cf_t* data_[SRSRAN_MAX_PORTS], uint32_t nsamples, srsran_timestamp_t* t)
{
DEBUG(" ---- Receive %d samples ----", nsamples);
void* ptr[SRSRAN_MAX_PORTS];
for (int i = 0; i < SRSRAN_MAX_PORTS; i++) {
ptr[i] = data_[i];
}
return srsran_rf_recv_with_time_multi(h, ptr, nsamples, true, NULL, NULL);
}
static SRSRAN_AGC_CALLBACK(srsran_rf_set_rx_gain_th_wrapper_)
{
srsran_rf_set_rx_gain_th((srsran_rf_t*)h, gain_db);
}
#endif
extern float mean_exec_time;
enum receiver_state { DECODE_MIB, DECODE_PDSCH } state;
srsran_cell_t cell;
srsran_ue_dl_t ue_dl;
srsran_ue_dl_cfg_t ue_dl_cfg;
srsran_dl_sf_cfg_t dl_sf;
srsran_pdsch_cfg_t pdsch_cfg;
srsran_ue_sync_t ue_sync;
prog_args_t prog_args;
uint32_t pkt_errors = 0, pkt_total = 0, nof_detected = 0, pmch_pkt_errors = 0, pmch_pkt_total = 0, nof_trials = 0;
srsran_netsink_t net_sink, net_sink_signal;
/* Useful macros for printing lines which will disappear */
#define PRINT_LINE_INIT() \
int this_nof_lines = 0; \
static int prev_nof_lines = 0
#define PRINT_LINE(_fmt, ...) \
printf("\033[K" _fmt "\n", ##__VA_ARGS__); \
this_nof_lines++
#define PRINT_LINE_RESET_CURSOR() \
printf("\033[%dA", this_nof_lines); \
prev_nof_lines = this_nof_lines
#define PRINT_LINE_ADVANCE_CURSOR() printf("\033[%dB", prev_nof_lines + 1)
int main(int argc, char** argv)
{
int ret;
#ifndef DISABLE_RF
srsran_rf_t rf;
#endif
srsran_debug_handle_crash(argc, argv);
parse_args(&prog_args, argc, argv);
srsran_use_standard_symbol_size(prog_args.use_standard_lte_rate);
#ifdef ENABLE_GUI
if (prog_args.mbsfn_area_id > -1) {
enable_mbsfn_plot = true;
}
#endif /* ENABLE_GUI */
for (int i = 0; i < SRSRAN_MAX_CODEWORDS; i++) {
data[i] = srsran_vec_u8_malloc(2000 * 8);
if (!data[i]) {
ERROR("Allocating data");
go_exit = true;
}
}
uint8_t mch_table[10];
bzero(&mch_table[0], sizeof(uint8_t) * 10);
if (prog_args.mbsfn_area_id > -1) {
generate_mcch_table(mch_table, prog_args.mbsfn_sf_mask);
}
if (prog_args.cpu_affinity > -1) {
cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
for (int i = 0; i < 8; i++) {
if (((prog_args.cpu_affinity >> i) & 0x01) == 1) {
printf("Setting pdsch_ue with affinity to core %d\n", i);
CPU_SET((size_t)i, &cpuset);
}
if (pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset)) {
ERROR("Error setting main thread affinity to %d", prog_args.cpu_affinity);
exit(-1);
}
}
}
if (prog_args.net_port > 0) {
if (srsran_netsink_init(&net_sink, prog_args.net_address, prog_args.net_port, SRSRAN_NETSINK_UDP)) {
ERROR("Error initiating UDP socket to %s:%d", prog_args.net_address, prog_args.net_port);
exit(-1);
}
srsran_netsink_set_nonblocking(&net_sink);
}
if (prog_args.net_port_signal > 0) {
if (srsran_netsink_init(
&net_sink_signal, prog_args.net_address_signal, prog_args.net_port_signal, SRSRAN_NETSINK_UDP)) {
ERROR("Error initiating UDP socket to %s:%d", prog_args.net_address_signal, prog_args.net_port_signal);
exit(-1);
}
srsran_netsink_set_nonblocking(&net_sink_signal);
}
float search_cell_cfo = 0;
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
printf("Opening RF device with %d RX antennas...\n", prog_args.rf_nof_rx_ant);
if (srsran_rf_open_devname(&rf, prog_args.rf_dev, prog_args.rf_args, prog_args.rf_nof_rx_ant)) {
fprintf(stderr, "Error opening rf\n");
exit(-1);
}
/* Set receiver gain */
if (prog_args.rf_gain > 0) {
srsran_rf_set_rx_gain(&rf, prog_args.rf_gain);
} else {
printf("Starting AGC thread...\n");
if (srsran_rf_start_gain_thread(&rf, false)) {
ERROR("Error opening rf");
exit(-1);
}
srsran_rf_set_rx_gain(&rf, srsran_rf_get_rx_gain(&rf));
cell_detect_config.init_agc = srsran_rf_get_rx_gain(&rf);
}
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigprocmask(SIG_UNBLOCK, &sigset, NULL);
signal(SIGINT, sig_int_handler);
/* set receiver frequency */
printf("Tuning receiver to %.3f MHz\n", (prog_args.rf_freq + prog_args.file_offset_freq) / 1000000);
srsran_rf_set_rx_freq(&rf, prog_args.rf_nof_rx_ant, prog_args.rf_freq + prog_args.file_offset_freq);
uint32_t ntrial = 0;
do {
ret = rf_search_and_decode_mib(
&rf, prog_args.rf_nof_rx_ant, &cell_detect_config, prog_args.force_N_id_2, &cell, &search_cell_cfo);
if (ret < 0) {
ERROR("Error searching for cell");
exit(-1);
} else if (ret == 0 && !go_exit) {
printf("Cell not found after [%4d] attempts. Trying again... (Ctrl+C to exit)\n", ntrial++);
}
} while (ret == 0 && !go_exit);
if (go_exit) {
srsran_rf_close(&rf);
exit(0);
}
/* set sampling frequency */
int srate = srsran_sampling_freq_hz(cell.nof_prb);
if (srate != -1) {
printf("Setting rx sampling rate %.2f MHz\n", (float)srate / 1000000);
float srate_rf = srsran_rf_set_rx_srate(&rf, (double)srate);
if (abs(srate - (int)srate_rf) > MAX_SRATE_DELTA) {
ERROR("Could not set rx sampling rate : wanted %d got %f", srate, srate_rf);
exit(-1);
}
} else {
ERROR("Invalid number of PRB %d", cell.nof_prb);
exit(-1);
}
INFO("Stopping RF and flushing buffer...\r");
}
#endif
/* If reading from file, go straight to PDSCH decoding. Otherwise, decode MIB first */
if (prog_args.input_file_name) {
/* preset cell configuration */
cell.id = prog_args.file_cell_id;
cell.cp = SRSRAN_CP_NORM;
cell.phich_length = SRSRAN_PHICH_NORM;
cell.phich_resources = SRSRAN_PHICH_R_1;
cell.nof_ports = prog_args.file_nof_ports;
cell.nof_prb = prog_args.file_nof_prb;
if (srsran_ue_sync_init_file_multi(&ue_sync,
prog_args.file_nof_prb,
prog_args.input_file_name,
prog_args.file_offset_time,
prog_args.file_offset_freq,
prog_args.rf_nof_rx_ant)) {
ERROR("Error initiating ue_sync");
exit(-1);
}
} else {
#ifndef DISABLE_RF
int decimate = 0;
if (prog_args.decimate) {
if (prog_args.decimate > 4 || prog_args.decimate < 0) {
printf("Invalid decimation factor, setting to 1 \n");
} else {
decimate = prog_args.decimate;
}
}
if (srsran_ue_sync_init_multi_decim(&ue_sync,
cell.nof_prb,
cell.id == 1000,
srsran_rf_recv_wrapper,
prog_args.rf_nof_rx_ant,
(void*)&rf,
decimate)) {
ERROR("Error initiating ue_sync");
exit(-1);
}
if (srsran_ue_sync_set_cell(&ue_sync, cell)) {
ERROR("Error initiating ue_sync");
exit(-1);
}
#endif
}
uint32_t max_num_samples = 3 * SRSRAN_SF_LEN_PRB(cell.nof_prb); /// Length in complex samples
for (int i = 0; i < prog_args.rf_nof_rx_ant; i++) {
sf_buffer[i] = srsran_vec_cf_malloc(max_num_samples);
}
srsran_ue_mib_t ue_mib;
if (srsran_ue_mib_init(&ue_mib, sf_buffer[0], cell.nof_prb)) {
ERROR("Error initaiting UE MIB decoder");
exit(-1);
}
if (srsran_ue_mib_set_cell(&ue_mib, cell)) {
ERROR("Error initaiting UE MIB decoder");
exit(-1);
}
if (srsran_ue_dl_init(&ue_dl, sf_buffer, cell.nof_prb, prog_args.rf_nof_rx_ant)) {
ERROR("Error initiating UE downlink processing module");
exit(-1);
}
if (srsran_ue_dl_set_cell(&ue_dl, cell)) {
ERROR("Error initiating UE downlink processing module");
exit(-1);
}
// Disable CP based CFO estimation during find
ue_sync.cfo_current_value = search_cell_cfo / 15000;
ue_sync.cfo_is_copied = true;
ue_sync.cfo_correct_enable_find = true;
srsran_sync_set_cfo_cp_enable(&ue_sync.sfind, false, 0);
ZERO_OBJECT(ue_dl_cfg);
ZERO_OBJECT(dl_sf);
ZERO_OBJECT(pdsch_cfg);
pdsch_cfg.meas_evm_en = true;
if (cell.frame_type == SRSRAN_TDD && prog_args.tdd_special_sf >= 0 && prog_args.sf_config >= 0) {
dl_sf.tdd_config.ss_config = prog_args.tdd_special_sf;
dl_sf.tdd_config.sf_config = prog_args.sf_config;
dl_sf.tdd_config.configured = true;
}
srsran_chest_dl_cfg_t chest_pdsch_cfg = {};
chest_pdsch_cfg.cfo_estimate_enable = prog_args.enable_cfo_ref;
chest_pdsch_cfg.cfo_estimate_sf_mask = 1023;
chest_pdsch_cfg.estimator_alg = srsran_chest_dl_str2estimator_alg(prog_args.estimator_alg);
chest_pdsch_cfg.sync_error_enable = true;
// Special configuration for MBSFN channel estimation
srsran_chest_dl_cfg_t chest_mbsfn_cfg = {};
chest_mbsfn_cfg.filter_type = SRSRAN_CHEST_FILTER_TRIANGLE;
chest_mbsfn_cfg.filter_coef[0] = 0.1;
chest_mbsfn_cfg.estimator_alg = SRSRAN_ESTIMATOR_ALG_INTERPOLATE;
chest_mbsfn_cfg.noise_alg = SRSRAN_NOISE_ALG_PSS;
// Allocate softbuffer buffers
srsran_softbuffer_rx_t rx_softbuffers[SRSRAN_MAX_CODEWORDS];
for (uint32_t i = 0; i < SRSRAN_MAX_CODEWORDS; i++) {
pdsch_cfg.softbuffers.rx[i] = &rx_softbuffers[i];
srsran_softbuffer_rx_init(pdsch_cfg.softbuffers.rx[i], cell.nof_prb);
}
pdsch_cfg.rnti = prog_args.rnti;
/* Configure MBSFN area id and non-MBSFN Region */
if (prog_args.mbsfn_area_id > -1) {
srsran_ue_dl_set_mbsfn_area_id(&ue_dl, prog_args.mbsfn_area_id);
srsran_ue_dl_set_non_mbsfn_region(&ue_dl, prog_args.non_mbsfn_region);
}
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
init_plots(cell);
sleep(1);
}
#endif /* ENABLE_GUI */
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
srsran_rf_start_rx_stream(&rf, false);
}
#endif
#ifndef DISABLE_RF
if (prog_args.rf_gain < 0 && !prog_args.input_file_name) {
srsran_rf_info_t* rf_info = srsran_rf_get_info(&rf);
srsran_ue_sync_start_agc(&ue_sync,
srsran_rf_set_rx_gain_th_wrapper_,
rf_info->min_rx_gain,
rf_info->max_rx_gain,
cell_detect_config.init_agc);
}
#endif
#ifdef PRINT_CHANGE_SCHEDULING
srsran_ra_dl_grant_t old_dl_dci;
bzero(&old_dl_dci, sizeof(srsran_ra_dl_grant_t));
#endif
ue_sync.cfo_correct_enable_track = !prog_args.disable_cfo;
srsran_pbch_decode_reset(&ue_mib.pbch);
INFO("\nEntering main loop...");
// Variables for measurements
uint32_t nframes = 0;
float rsrp0 = 0.0, rsrp1 = 0.0, rsrq = 0.0, snr = 0.0, enodebrate = 0.0, uerate = 0.0, procrate = 0.0,
sinr[SRSRAN_MAX_LAYERS][SRSRAN_MAX_CODEBOOKS] = {}, sync_err[SRSRAN_MAX_PORTS][SRSRAN_MAX_PORTS] = {};
bool decode_pdsch = false;
for (int i = 0; i < SRSRAN_MAX_LAYERS; i++) {
srsran_vec_f_zero(sinr[i], SRSRAN_MAX_CODEBOOKS);
}
/* Main loop */
uint64_t sf_cnt = 0;
uint32_t sfn = 0;
uint32_t last_decoded_tm = 0;
while (!go_exit && (sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1)) {
char input[128];
PRINT_LINE_INIT();
fd_set set;
FD_ZERO(&set);
FD_SET(0, &set);
struct timeval to;
to.tv_sec = 0;
to.tv_usec = 0;
/* Set default verbose level */
set_srsran_verbose_level(prog_args.verbose);
int n = select(1, &set, NULL, NULL, &to);
if (n == 1) {
/* If a new line is detected set verbose level to Debug */
if (fgets(input, sizeof(input), stdin)) {
set_srsran_verbose_level(SRSRAN_VERBOSE_DEBUG);
pkt_errors = 0;
pkt_total = 0;
nof_detected = 0;
nof_trials = 0;
}
}
cf_t* buffers[SRSRAN_MAX_CHANNELS] = {};
for (int p = 0; p < SRSRAN_MAX_PORTS; p++) {
buffers[p] = sf_buffer[p];
}
ret = srsran_ue_sync_zerocopy(&ue_sync, buffers, max_num_samples);
if (ret < 0) {
ERROR("Error calling srsran_ue_sync_work()");
}
#ifdef CORRECT_SAMPLE_OFFSET
float sample_offset =
(float)srsran_ue_sync_get_last_sample_offset(&ue_sync) + srsran_ue_sync_get_sfo(&ue_sync) / 1000;
srsran_ue_dl_set_sample_offset(&ue_dl, sample_offset);
#endif
/* srsran_ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */
if (ret == 1) {
bool acks[SRSRAN_MAX_CODEWORDS] = {false};
struct timeval t[3];
uint32_t sf_idx = srsran_ue_sync_get_sfidx(&ue_sync);
switch (state) {
case DECODE_MIB:
if (sf_idx == 0) {
uint8_t bch_payload[SRSRAN_BCH_PAYLOAD_LEN];
int sfn_offset;
n = srsran_ue_mib_decode(&ue_mib, bch_payload, NULL, &sfn_offset);
if (n < 0) {
ERROR("Error decoding UE MIB");
exit(-1);
} else if (n == SRSRAN_UE_MIB_FOUND) {
srsran_pbch_mib_unpack(bch_payload, &cell, &sfn);
srsran_cell_fprint(stdout, &cell, sfn);
printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset);
sfn = (sfn + sfn_offset) % 1024;
state = DECODE_PDSCH;
}
}
break;
case DECODE_PDSCH:
if (prog_args.rnti != SRSRAN_SIRNTI) {
decode_pdsch = true;
if (srsran_sfidx_tdd_type(dl_sf.tdd_config, sf_idx) == SRSRAN_TDD_SF_U) {
decode_pdsch = false;
}
} else {
/* We are looking for SIB1 Blocks, search only in appropiate places */
if ((sf_idx == 5 && (sfn % 2) == 0) || mch_table[sf_idx] == 1) {
decode_pdsch = true;
} else {
decode_pdsch = false;
}
}
uint32_t tti = sfn * 10 + sf_idx;
gettimeofday(&t[1], NULL);
if (decode_pdsch) {
srsran_sf_t sf_type;
if (mch_table[sf_idx] == 0 || prog_args.mbsfn_area_id < 0) { // Not an MBSFN subframe
sf_type = SRSRAN_SF_NORM;
// Set PDSCH channel estimation
ue_dl_cfg.chest_cfg = chest_pdsch_cfg;
} else {
sf_type = SRSRAN_SF_MBSFN;
// Set MBSFN channel estimation
ue_dl_cfg.chest_cfg = chest_mbsfn_cfg;
}
n = 0;
for (uint32_t tm = 0; tm < 4 && !n; tm++) {
dl_sf.tti = tti;
dl_sf.sf_type = sf_type;
ue_dl_cfg.cfg.tm = (srsran_tm_t)tm;
ue_dl_cfg.cfg.pdsch.use_tbs_index_alt = prog_args.enable_256qam;
if ((ue_dl_cfg.cfg.tm == SRSRAN_TM1 && cell.nof_ports == 1) ||
(ue_dl_cfg.cfg.tm > SRSRAN_TM1 && cell.nof_ports > 1)) {
n = srsran_ue_dl_find_and_decode(&ue_dl, &dl_sf, &ue_dl_cfg, &pdsch_cfg, data, acks);
if (n > 0) {
nof_detected++;
last_decoded_tm = tm;
for (uint32_t tb = 0; tb < SRSRAN_MAX_CODEWORDS; tb++) {
if (pdsch_cfg.grant.tb[tb].enabled) {
if (!acks[tb]) {
if (sf_type == SRSRAN_SF_NORM) {
pkt_errors++;
} else {
pmch_pkt_errors++;
}
}
if (sf_type == SRSRAN_SF_NORM) {
pkt_total++;
} else {
pmch_pkt_total++;
}
}
}
}
}
}
// Feed-back ue_sync with chest_dl CFO estimation
if (sf_idx == 5 && prog_args.enable_cfo_ref) {
srsran_ue_sync_set_cfo_ref(&ue_sync, ue_dl.chest_res.cfo);
}
gettimeofday(&t[2], NULL);
get_time_interval(t);
if (n > 0) {
/* Send data if socket active */
if (prog_args.net_port > 0) {
if (sf_idx == 1) {
srsran_netsink_write(&net_sink, data[0], 1 + (n - 1) / 8);
} else {
// TODO: UDP Data transmission does not work
for (uint32_t tb = 0; tb < SRSRAN_MAX_CODEWORDS; tb++) {
if (pdsch_cfg.grant.tb[tb].enabled) {
srsran_netsink_write(&net_sink, data[tb], 1 + (pdsch_cfg.grant.tb[tb].tbs - 1) / 8);
}
}
}
}
#ifdef PRINT_CHANGE_SCHEDULING
if (pdsch_cfg.dci.cw[0].mcs_idx != old_dl_dci.cw[0].mcs_idx ||
memcmp(&pdsch_cfg.dci.type0_alloc, &old_dl_dci.type0_alloc, sizeof(srsran_ra_type0_t)) ||
memcmp(&pdsch_cfg.dci.type1_alloc, &old_dl_dci.type1_alloc, sizeof(srsran_ra_type1_t)) ||
memcmp(&pdsch_cfg.dci.type2_alloc, &old_dl_dci.type2_alloc, sizeof(srsran_ra_type2_t))) {
old_dl_dci = pdsch_cfg.dci;
fflush(stdout);
printf("DCI %s\n", srsran_dci_format_string(pdsch_cfg.dci.dci_format));
srsran_ra_pdsch_fprint(stdout, &old_dl_dci, cell.nof_prb);
}
#endif
}
nof_trials++;
uint32_t enb_bits = ((pdsch_cfg.grant.tb[0].enabled ? pdsch_cfg.grant.tb[0].tbs : 0) +
(pdsch_cfg.grant.tb[1].enabled ? pdsch_cfg.grant.tb[1].tbs : 0));
uint32_t ue_bits = ((acks[0] ? pdsch_cfg.grant.tb[0].tbs : 0) + (acks[1] ? pdsch_cfg.grant.tb[1].tbs : 0));
rsrq = SRSRAN_VEC_EMA(ue_dl.chest_res.rsrp_dbm, rsrq, 0.1f);
rsrp0 = SRSRAN_VEC_EMA(ue_dl.chest_res.rsrp_port_dbm[0], rsrp0, 0.05f);
rsrp1 = SRSRAN_VEC_EMA(ue_dl.chest_res.rsrp_port_dbm[1], rsrp1, 0.05f);
snr = SRSRAN_VEC_EMA(ue_dl.chest_res.snr_db, snr, 0.05f);
enodebrate = SRSRAN_VEC_EMA(enb_bits / 1000.0f, enodebrate, 0.05f);
uerate = SRSRAN_VEC_EMA(ue_bits / 1000.0f, uerate, 0.001f);
if (chest_pdsch_cfg.sync_error_enable) {
for (uint32_t i = 0; i < cell.nof_ports; i++) {
for (uint32_t j = 0; j < prog_args.rf_nof_rx_ant; j++) {
sync_err[i][j] = SRSRAN_VEC_EMA(ue_dl.chest.sync_err[i][j], sync_err[i][j], 0.001f);
if (!isnormal(sync_err[i][j])) {
sync_err[i][j] = 0.0f;
}
}
}
}
float elapsed = (float)t[0].tv_usec + t[0].tv_sec * 1.0e+6f;
if (elapsed != 0.0f) {
procrate = SRSRAN_VEC_EMA(ue_bits / elapsed, procrate, 0.01f);
}
nframes++;
if (isnan(rsrq)) {
rsrq = 0;
}
if (isnan(snr)) {
snr = 0;
}
if (isnan(rsrp0)) {
rsrp0 = 0;
}
if (isnan(rsrp1)) {
rsrp1 = 0;
}
}
// Plot and Printf
if (sf_idx == 5) {
float gain = prog_args.rf_gain;
if (gain < 0) {
gain = srsran_convert_power_to_dB(srsran_agc_get_gain(&ue_sync.agc));
}
/* Print transmission scheme */
/* Print basic Parameters */
PRINT_LINE(" CFO: %+7.2f Hz", srsran_ue_sync_get_cfo(&ue_sync));
PRINT_LINE(" RSRP: %+5.1f dBm | %+5.1f dBm", rsrp0, rsrp1);
PRINT_LINE(" SNR: %+5.1f dB", snr);
PRINT_LINE(" TM: %d", last_decoded_tm + 1);
PRINT_LINE(
" Rb: %6.2f / %6.2f / %6.2f Mbps (net/maximum/processing)", uerate, enodebrate, procrate);
PRINT_LINE(" PDCCH-Miss: %5.2f%%", 100 * (1 - (float)nof_detected / nof_trials));
PRINT_LINE(" PDSCH-BLER: %5.2f%%", (float)100 * pkt_errors / pkt_total);
PRINT_LINE(" PDSCH-EVM: %5.2f%%", ue_dl.pdsch.avg_evm);
if (prog_args.mbsfn_area_id > -1) {
PRINT_LINE(" PMCH-BLER: %5.2f%%", (float)100 * pkt_errors / pmch_pkt_total);
}
PRINT_LINE(" TB 0: mcs=%d; tbs=%d", pdsch_cfg.grant.tb[0].mcs_idx, pdsch_cfg.grant.tb[0].tbs);
PRINT_LINE(" TB 1: mcs=%d; tbs=%d", pdsch_cfg.grant.tb[1].mcs_idx, pdsch_cfg.grant.tb[1].tbs);
/* MIMO: if tx and rx antennas are bigger than 1 */
if (cell.nof_ports > 1 && ue_dl.pdsch.nof_rx_antennas > 1) {
uint32_t ri = 0;
float cn = 0;
/* Compute condition number */
if (srsran_ue_dl_select_ri(&ue_dl, &ri, &cn)) {
/* Condition number calculation is not supported for the number of tx & rx antennas*/
PRINT_LINE(" κ: NA");
} else {
/* Print condition number */
PRINT_LINE(" κ: %.1f dB, RI=%d (Condition number, 0 dB => Best)", cn, ri);
}
PRINT_LINE("");
}
if (chest_pdsch_cfg.sync_error_enable) {
for (uint32_t i = 0; i < cell.nof_ports; i++) {
for (uint32_t j = 0; j < prog_args.rf_nof_rx_ant; j++) {
PRINT_LINE("sync_err[%d][%d]=%f", i, j, sync_err[i][j]);
}
}
}
PRINT_LINE("Press enter maximum printing debug log of 1 subframe.");
PRINT_LINE("");
PRINT_LINE_RESET_CURSOR();
}
break;
}
if (sf_idx == 9) {
sfn++;
if (sfn == 1024) {
sfn = 0;
PRINT_LINE_ADVANCE_CURSOR();
pkt_errors = 0;
pkt_total = 0;
pmch_pkt_errors = 0;
pmch_pkt_total = 0;
}
}
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
if ((sfn % 3) == 0 && decode_pdsch) {
plot_sf_idx = sf_idx;
plot_track = true;
sem_post(&plot_sem);
}
}
#endif /* ENABLE_GUI */
} else if (ret == 0) {
printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r",
srsran_sync_get_peak_value(&ue_sync.sfind),
ue_sync.frame_total_cnt,
ue_sync.state);
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
plot_sf_idx = srsran_ue_sync_get_sfidx(&ue_sync);
plot_track = false;
sem_post(&plot_sem);
}
#endif /* ENABLE_GUI */
}
sf_cnt++;
} // Main loop
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
if (!pthread_kill(plot_thread, 0)) {
pthread_kill(plot_thread, SIGHUP);
pthread_join(plot_thread, NULL);
}
}
#endif
srsran_ue_dl_free(&ue_dl);
srsran_ue_sync_free(&ue_sync);
for (int i = 0; i < SRSRAN_MAX_CODEWORDS; i++) {
if (data[i]) {
free(data[i]);
}
}
for (int i = 0; i < prog_args.rf_nof_rx_ant; i++) {
if (sf_buffer[i]) {
free(sf_buffer[i]);
}
}
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
srsran_ue_mib_free(&ue_mib);
srsran_rf_close(&rf);
}
#endif
printf("\nBye\n");
exit(0);
}
/**********************************************************************
* Plotting Functions
***********************************************************************/
#ifdef ENABLE_GUI
plot_real_t p_sync, pce;
plot_scatter_t pscatequal, pscatequal_pdcch, pscatequal_pmch;
static float tmp_plot[110 * 15 * 2048];
static float tmp_plot2[110 * 15 * 2048];
void* plot_thread_run(void* arg)
{
int i;
uint32_t nof_re = SRSRAN_SF_LEN_RE(ue_dl.cell.nof_prb, ue_dl.cell.cp);
sdrgui_init();
plot_scatter_init(&pscatequal);
plot_scatter_setTitle(&pscatequal, "PDSCH - Equalized Symbols");
plot_scatter_setXAxisScale(&pscatequal, -4, 4);
plot_scatter_setYAxisScale(&pscatequal, -4, 4);
plot_scatter_addToWindowGrid(&pscatequal, (char*)"pdsch_ue", 0, 0);
if (enable_mbsfn_plot) {
plot_scatter_init(&pscatequal_pmch);
plot_scatter_setTitle(&pscatequal_pmch, "PMCH - Equalized Symbols");
plot_scatter_setXAxisScale(&pscatequal_pmch, -4, 4);
plot_scatter_setYAxisScale(&pscatequal_pmch, -4, 4);
plot_scatter_addToWindowGrid(&pscatequal_pmch, (char*)"pdsch_ue", 0, 1);
}
if (!prog_args.disable_plots_except_constellation) {
plot_real_init(&pce);
plot_real_setTitle(&pce, "Channel Response - Magnitude");
plot_real_setLabels(&pce, "Index", "dB");
plot_real_setYAxisScale(&pce, -40, 40);
plot_real_init(&p_sync);
plot_real_setTitle(&p_sync, "PSS Cross-Corr abs value");
plot_real_setYAxisScale(&p_sync, 0, 1);
plot_scatter_init(&pscatequal_pdcch);
plot_scatter_setTitle(&pscatequal_pdcch, "PDCCH - Equalized Symbols");
plot_scatter_setXAxisScale(&pscatequal_pdcch, -4, 4);
plot_scatter_setYAxisScale(&pscatequal_pdcch, -4, 4);
plot_real_addToWindowGrid(&pce, (char*)"pdsch_ue", 0, (enable_mbsfn_plot) ? 2 : 1);
plot_real_addToWindowGrid(&pscatequal_pdcch, (char*)"pdsch_ue", 1, 0);
plot_real_addToWindowGrid(&p_sync, (char*)"pdsch_ue", 1, 1);
}
while (1) {
sem_wait(&plot_sem);
uint32_t nof_symbols = pdsch_cfg.grant.nof_re;
if (!prog_args.disable_plots_except_constellation) {
for (i = 0; i < nof_re; i++) {
tmp_plot[i] = srsran_convert_amplitude_to_dB(cabsf(ue_dl.sf_symbols[0][i]));
if (isinf(tmp_plot[i])) {
tmp_plot[i] = -80;
}
}
int sz = srsran_symbol_sz(ue_dl.cell.nof_prb);
if (sz > 0) {
srsran_vec_f_zero(tmp_plot2, sz);
}
int g = (sz - 12 * ue_dl.cell.nof_prb) / 2;
for (i = 0; i < 12 * ue_dl.cell.nof_prb; i++) {
tmp_plot2[g + i] = srsran_convert_amplitude_to_dB(cabsf(ue_dl.chest_res.ce[0][0][i]));
if (isinf(tmp_plot2[g + i])) {
tmp_plot2[g + i] = -80;
}
}
plot_real_setNewData(&pce, tmp_plot2, sz);
if (!prog_args.input_file_name) {
if (plot_track) {
srsran_pss_t* pss_obj = srsran_sync_get_cur_pss_obj(&ue_sync.strack);
int max = srsran_vec_max_fi(pss_obj->conv_output_avg, pss_obj->frame_size + pss_obj->fft_size - 1);
srsran_vec_sc_prod_fff(pss_obj->conv_output_avg,
1 / pss_obj->conv_output_avg[max],
tmp_plot2,
pss_obj->frame_size + pss_obj->fft_size - 1);
plot_real_setNewData(&p_sync, tmp_plot2, pss_obj->frame_size);
} else {
int max = srsran_vec_max_fi(ue_sync.sfind.pss.conv_output_avg,
ue_sync.sfind.pss.frame_size + ue_sync.sfind.pss.fft_size - 1);
srsran_vec_sc_prod_fff(ue_sync.sfind.pss.conv_output_avg,
1 / ue_sync.sfind.pss.conv_output_avg[max],
tmp_plot2,
ue_sync.sfind.pss.frame_size + ue_sync.sfind.pss.fft_size - 1);
plot_real_setNewData(&p_sync, tmp_plot2, ue_sync.sfind.pss.frame_size);
}
}
plot_scatter_setNewData(&pscatequal_pdcch, ue_dl.pdcch.d, 36 * ue_dl.pdcch.nof_cce[0]);
}
plot_scatter_setNewData(&pscatequal, ue_dl.pdsch.d[0], nof_symbols);
if (enable_mbsfn_plot) {
plot_scatter_setNewData(&pscatequal_pmch, ue_dl.pmch.d, nof_symbols);
}
if (plot_sf_idx == 1) {
if (prog_args.net_port_signal > 0) {
srsran_netsink_write(
&net_sink_signal, &sf_buffer[srsran_ue_sync_sf_len(&ue_sync) / 7], srsran_ue_sync_sf_len(&ue_sync));
}
}
}
return NULL;
}
void init_plots()
{
if (sem_init(&plot_sem, 0, 0)) {
perror("sem_init");
exit(-1);
}
pthread_attr_t attr;
struct sched_param param;
param.sched_priority = 0;
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
pthread_attr_setschedparam(&attr, &param);
if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) {
perror("pthread_create");
exit(-1);
}
}
#endif /* ENABLE_GUI */