You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsue/test/phy/ue_itf_test_prach.cc

404 lines
11 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <unistd.h>
#include "srslte/phy/utils/debug.h"
#include "phy/phy.h"
#include "srslte/interfaces/ue_interfaces.h"
#include "srslte/common/log_filter.h"
#include "srslte/radio/radio_multi.h"
/**********************************************************************
* Program arguments processing
***********************************************************************/
typedef struct {
float rf_rx_freq;
float rf_tx_freq;
float rf_rx_gain;
float rf_tx_gain;
bool continous;
}prog_args_t;
prog_args_t prog_args;
uint32_t srsapps_verbose = 0;
void args_default(prog_args_t *args) {
args->rf_rx_freq = -1.0;
args->rf_tx_freq = -1.0;
args->rf_rx_gain = -1; // set to autogain
args->rf_tx_gain = -1;
args->continous = false;
}
void usage(prog_args_t *args, char *prog) {
printf("Usage: %s [gGcv] -f rx_frequency -F tx_frequency (in Hz)\n", prog);
printf("\t-g RF RX gain [Default AGC]\n");
printf("\t-G RF TX gain [Default same as RX gain (AGC)]\n");
printf("\t-c Run continuously [Default only once]\n");
printf("\t-v [increase verbosity, default none]\n");
}
void parse_args(prog_args_t *args, int argc, char **argv) {
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "gGfFcv")) != -1) {
switch (opt) {
case 'g':
args->rf_rx_gain = atof(argv[optind]);
break;
case 'G':
args->rf_tx_gain = atof(argv[optind]);
break;
case 'f':
args->rf_rx_freq = atof(argv[optind]);
break;
case 'F':
args->rf_tx_freq = atof(argv[optind]);
break;
case 'c':
args->continous = true;
break;
case 'v':
srsapps_verbose++;
break;
default:
usage(args, argv[0]);
exit(-1);
}
}
if (args->rf_rx_freq < 0 || args->rf_tx_freq < 0) {
usage(args, argv[0]);
exit(-1);
}
}
typedef enum{
rar_header_type_bi = 0,
rar_header_type_rapid,
rar_header_type_n_items,
}rar_header_t;
static const char rar_header_text[rar_header_type_n_items][8] = {"BI", "RAPID"};
typedef struct {
rar_header_t hdr_type;
bool hopping_flag;
uint32_t tpc_command;
bool ul_delay;
bool csi_req;
uint16_t rba;
uint16_t timing_adv_cmd;
uint16_t temp_c_rnti;
uint8_t mcs;
uint8_t RAPID;
uint8_t BI;
}rar_msg_t;
int rar_unpack(uint8_t *buffer, rar_msg_t *msg)
{
int ret = SRSLTE_ERROR;
uint8_t *ptr = buffer;
if(buffer != NULL &&
msg != NULL)
{
ptr++;
msg->hdr_type = (rar_header_t) *ptr++;
if(msg->hdr_type == rar_header_type_bi) {
ptr += 2;
msg->BI = srslte_bit_pack(&ptr, 4);
ret = SRSLTE_SUCCESS;
} else if (msg->hdr_type == rar_header_type_rapid) {
msg->RAPID = srslte_bit_pack(&ptr, 6);
ptr++;
msg->timing_adv_cmd = srslte_bit_pack(&ptr, 11);
msg->hopping_flag = *ptr++;
msg->rba = srslte_bit_pack(&ptr, 10);
msg->mcs = srslte_bit_pack(&ptr, 4);
msg->tpc_command = srslte_bit_pack(&ptr, 3);
msg->ul_delay = *ptr++;
msg->csi_req = *ptr++;
msg->temp_c_rnti = srslte_bit_pack(&ptr, 16);
ret = SRSLTE_SUCCESS;
}
}
return(ret);
}
srsue::phy my_phy;
bool bch_decoded = false;
uint8_t payload[SRSLTE_MAX_TB][10240];
uint8_t payload_bits[SRSLTE_MAX_TB][10240];
const uint8_t conn_request_msg[] = {0x20, 0x06, 0x1F, 0x5C, 0x2C, 0x04, 0xB2, 0xAC, 0xF6, 0x00, 0x00, 0x00};
enum mac_state {RA, RAR, CONNREQUEST, CONNSETUP} state = RA;
uint32_t preamble_idx = 0;
rar_msg_t rar_msg;
uint32_t nof_rtx_connsetup = 0;
uint32_t rv_value[4] = {0, 2, 3, 1};
void config_phy() {
srsue::phy_interface_rrc::phy_cfg_t config;
config.common.prach_cnfg.prach_cnfg_info.prach_config_index = 0;
config.common.prach_cnfg.prach_cnfg_info.prach_freq_offset = 0;
config.common.prach_cnfg.prach_cnfg_info.high_speed_flag = false;
config.common.prach_cnfg.root_sequence_index = 0;
config.common.prach_cnfg.prach_cnfg_info.zero_correlation_zone_config = 11;
config.common.pusch_cnfg.ul_rs.group_hopping_enabled = false;
config.common.pusch_cnfg.ul_rs.sequence_hopping_enabled = false;
config.common.pusch_cnfg.n_sb = 2;
config.common.pusch_cnfg.ul_rs.cyclic_shift = 0;
config.common.pusch_cnfg.ul_rs.group_assignment_pusch = 0;
config.common.pusch_cnfg.pusch_hopping_offset = 0;
config.common.pucch_cnfg.delta_pucch_shift = LIBLTE_RRC_DELTA_PUCCH_SHIFT_DS2;
config.common.pucch_cnfg.n_cs_an = 0;
config.common.pucch_cnfg.n1_pucch_an = 1;
my_phy.configure_ul_params();
my_phy.configure_prach_params();
}
srslte_softbuffer_rx_t softbuffers_rx[SRSLTE_MAX_TB];
srslte_softbuffer_tx_t softbuffers_tx[SRSLTE_MAX_TB];
uint16_t temp_c_rnti;
class rrc_dummy : public srsue::rrc_interface_phy
{
public:
void in_sync() {};
void out_of_sync() {};
};
/******** MAC Interface implementation */
class testmac : public srsue::mac_interface_phy
{
public:
testmac() {
rar_rnti_set = false;
}
bool rar_rnti_set;
void pch_decoded_ok(uint32_t len) {}
void tti_clock(uint32_t tti) {
if (!rar_rnti_set) {
int prach_tti = my_phy.prach_tx_tti();
if (prach_tti > 0) {
my_phy.pdcch_dl_search(SRSLTE_RNTI_RAR, 1+prach_tti%10, prach_tti+3, prach_tti+13);
rar_rnti_set = true;
}
}
}
void new_grant_ul(mac_grant_t grant, tb_action_ul_t *action) {
printf("New grant UL\n");
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb ++) {
memcpy(payload[tb], conn_request_msg, grant.n_bytes[tb]*sizeof(uint8_t));
action->rv[tb] = rv_value[nof_rtx_connsetup%4];
action->payload_ptr[tb] = payload[tb];
if (action->rv[tb] == 0) {
srslte_softbuffer_tx_reset(&softbuffers_tx[tb]);
}
}
action->current_tx_nb = nof_rtx_connsetup;
action->softbuffers = softbuffers_tx;
action->rnti = temp_c_rnti;
action->expect_ack = (nof_rtx_connsetup < 5)?true:false;
memcpy(&action->phy_grant, &grant.phy_grant, sizeof(srslte_phy_grant_t));
memcpy(&last_grant, &grant, sizeof(mac_grant_t));
action->tx_enabled = true;
my_phy.pdcch_dl_search(SRSLTE_RNTI_USER, temp_c_rnti);
}
void new_grant_ul_ack(mac_grant_t grant, bool ack, tb_action_ul_t *action) {
printf("New grant UL ACK\n");
}
void harq_recv(uint32_t tti, bool ack, tb_action_ul_t *action) {
printf("harq recv hi=%d\n", ack?1:0);
if (!ack) {
nof_rtx_connsetup++;
action->current_tx_nb = nof_rtx_connsetup;
action->softbuffers = softbuffers_tx;
action->rnti = temp_c_rnti;
action->expect_ack = true;
memcpy(&action->phy_grant, &last_grant.phy_grant, sizeof(srslte_phy_grant_t));
action->tx_enabled = true;
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb ++) {
action->rv[tb] = rv_value[nof_rtx_connsetup%4];
if (action->rv[tb] == 0) {
srslte_softbuffer_tx_reset(&softbuffers_tx[tb]);
}
printf("Retransmission %d (TB %d), rv=%d\n", nof_rtx_connsetup, tb, action->rv[tb]);
}
}
}
void new_grant_dl(mac_grant_t grant, tb_action_dl_t *action) {
action->decode_enabled = true;
action->default_ack = false;
if (grant.rnti == 2) {
action->generate_ack = false;
} else {
action->generate_ack = true;
}
action->rnti = grant.rnti;
memcpy(&action->phy_grant, &grant.phy_grant, sizeof(srslte_phy_grant_t));
memcpy(&last_grant, &grant, sizeof(mac_grant_t));
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb ++) {
action->softbuffers[tb] = &softbuffers_rx[tb];
action->rv[tb] = grant.rv[tb];
action->payload_ptr[tb] = payload[tb];
if (action->rv[tb] == 0) {
srslte_softbuffer_rx_reset(&softbuffers_rx[tb]);
}
}
}
void tb_decoded(bool ack, uint32_t tb_idx, srslte_rnti_type_t rnti_type, uint32_t harq_pid) {
if (ack) {
if (rnti_type == SRSLTE_RNTI_RAR) {
my_phy.pdcch_dl_search_reset();
srslte_bit_unpack_vector(payload[tb_idx], payload_bits[tb_idx], last_grant.n_bytes[tb_idx]*8);
rar_unpack(payload_bits[tb_idx], &rar_msg);
if (rar_msg.RAPID == preamble_idx) {
printf("Received RAR at TTI: %d\n", last_grant.tti);
my_phy.set_timeadv_rar(rar_msg.timing_adv_cmd);
temp_c_rnti = rar_msg.temp_c_rnti;
if (last_grant.n_bytes[0]*8 > 20 + SRSLTE_RAR_GRANT_LEN) {
uint8_t rar_grant[SRSLTE_RAR_GRANT_LEN];
memcpy(rar_grant, &payload_bits[20], sizeof(uint8_t)*SRSLTE_RAR_GRANT_LEN);
my_phy.set_rar_grant(last_grant.tti, rar_grant);
}
} else {
printf("Received RAR RAPID=%d\n", rar_msg.RAPID);
}
} else {
printf("Received Connection Setup\n");
my_phy.pdcch_dl_search_reset();
}
}
}
void bch_decoded_ok(uint8_t *payload, uint32_t len) {
printf("BCH decoded\n");
bch_decoded = true;
srslte_cell_t cell;
my_phy.get_current_cell(&cell);
for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb++) {
srslte_softbuffer_rx_init(&softbuffers_rx[tb], cell.nof_prb);
srslte_softbuffer_tx_init(&softbuffers_tx[tb], cell.nof_prb);
}
}
private:
mac_grant_t last_grant;
};
testmac my_mac;
srslte::radio_multi radio;
rrc_dummy rrc_dummy;
int main(int argc, char *argv[])
{
srslte::log_filter log("PHY");
parse_args(&prog_args, argc, argv);
// Init Radio and PHY
radio.init();
my_phy.init(&radio, &my_mac, &rrc_dummy, &log);
if (prog_args.rf_rx_gain > 0 && prog_args.rf_tx_gain > 0) {
radio.set_rx_gain(prog_args.rf_rx_gain);
radio.set_tx_gain(prog_args.rf_tx_gain);
} else {
radio.start_agc(false);
radio.set_tx_rx_gain_offset(10);
my_phy.set_agc_enable(true);
}
if (srsapps_verbose == 1) {
log.set_level(srslte::LOG_LEVEL_INFO);
printf("Log level info\n");
}
if (srsapps_verbose == 2) {
log.set_level(srslte::LOG_LEVEL_DEBUG);
printf("Log level debug\n");
}
// Give it time to create thread
sleep(1);
// Set RX freq
radio.set_rx_freq(prog_args.rf_rx_freq);
radio.set_tx_freq(prog_args.rf_tx_freq);
// Instruct the PHY to configure PRACH parameters and sync to current cell
while(!my_phy.sync_status()) {
usleep(20000);
}
// Setup PHY parameters
config_phy();
/* Instruct PHY to send PRACH and prepare it for receiving RAR */
my_phy.prach_send(preamble_idx);
/* go to idle and process each tti */
bool running = true;
while(running) {
sleep(1);
}
my_phy.stop();
radio.stop_rx();
}