You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

261 lines
6.8 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSENB_TA_H
#define SRSENB_TA_H
#include "srsran/config.h"
#include "srsran/phy/common/phy_common.h"
#include <cmath>
#include <vector>
namespace srsenb {
/**
* Time Aligment FSM parent/callback interface for pushing n TA values
*/
class mac_ta_ue_interface
{
public:
virtual uint32_t set_ta(int ta) = 0;
};
/**
* UE's FSM for controlling Time Aligment command generation.
*
* Initially the FSM starts at idle state which transitions to Measure as soon as start is called. Measurements are
* collected while the FSM is in Measure state. Up to MAX_NOF_MEAS are stored. The FSM uses a minimum of MIN_NOF_MEAS
* measurements to compute the TA average. The TA command is triggered as soon as the TA average is higher than
* TA_N_THRESHOLD. After triggering a TA command, holds in prohibit state for PROHIBIT_PERIOD_MS before start collecting
* measurements.
*
* +------+ Start +---------+ Trigger +----------+
* | Idle | ------->| Measure |------------>| Prohibit |
* +------+ +---------+ +----------+
* ^ ^ |
* | | Prohibit expires |
* --+ +------------------------+
*
*
*/
class ta
{
private:
/// Control constants
static constexpr uint32_t MAX_NOF_MEAS = 16; ///< Maximum number of measurements to store
static constexpr uint32_t MIN_NOF_MEAS = 4; ///< Minimum number of measurements to compute
static constexpr uint32_t MAX_MEAS_TIME_MS = 100; ///< Maximum time of measurement
static constexpr uint32_t PROHIBIT_PERIOD_MS = 20; ///< Time to wait from the n TA value push to measure again
static constexpr int32_t TA_N_THRESHOLD = 1; ///< n TA value threshold
/// Parent/callback object
mac_ta_ue_interface* parent = nullptr;
/// TA measure datatype
typedef struct {
uint32_t ts_ms; ///< Time in which the measurement was taken in ms
float ta_us; ///< TA measurement in microseconds
} ta_meas_t;
uint32_t meas_t_ms = 0; ///< Time counter in milliseconds
uint32_t meas_count = 0; ///< Number of measures in the buffer
uint32_t meas_idx = 0; ///< Next mesurement index in the buffer
std::vector<ta_meas_t> meas_values;
// FSM states
typedef enum {
state_idle = 0, ///< Waits for start order
state_measure, ///< Performing measurement
state_prohibit ///< Waiting for HARQ to transmit CE command, NO measurement shall be stored
} state_t;
state_t state = state_idle;
/**
* Reset Measurement and timer counter
*/
void reset_measurements()
{
meas_t_ms = 0;
meas_count = 0;
meas_idx = 0;
}
/**
* Averages/extrapolates n TA value
*
* @return the required n TA value for the current time (meas_t_ms)
*/
int get_ta_n()
{
float ta_us = 0.0f;
// Average all measurements
for (uint32_t i = 0; i < meas_count; i++) {
// Write here a much fancier extrapolation algorithm
ta_us += meas_values[i].ta_us;
}
if (meas_count) {
ta_us /= static_cast<float>(meas_count);
}
// Return the n_ta value
return static_cast<int>(std::roundf(ta_us * 1e-6f / SRSRAN_LTE_TS / 16.0f));
}
/**
* Runs measure state
* @return the number of enqueued MAC CE carrying TA commands
*/
uint32_t run_state_measure()
{
uint32_t ret = 0;
// Avoid processing if no measurement or no minimum covered or maximum measuring time is reached
if (meas_count == 0 or (meas_count < MIN_NOF_MEAS and meas_t_ms < MAX_MEAS_TIME_MS)) {
return ret;
}
// Get TA command value
int ta_n = get_ta_n();
// Send command
if (abs(ta_n) > TA_N_THRESHOLD) {
// Set UE TA
ret = parent->set_ta(ta_n);
// Reset measurement counter
reset_measurements();
// Transition to prohibit state
state = state_prohibit;
}
return ret;
}
/**
* Runs prohibit state
* @return 0
*/
uint32_t run_state_prohibit()
{
// Prohibit time expired
if (meas_t_ms >= PROHIBIT_PERIOD_MS) {
// Reset counters
reset_measurements();
// Go to measure
state = state_measure;
}
return 0;
}
/**
* Runs The internal FSM
* @return the number of eneuqued MAC CE carrying TA commands
*/
uint32_t run_fsm()
{
switch (state) {
case state_idle:
// Waits for Start order, do nothing
return 0;
case state_measure:
return run_state_measure();
case state_prohibit:
return run_state_prohibit();
default:; // Do nothing
}
return 0;
}
public:
/**
* TA FSM Constructor
* @param parent_ UE MAC object with TA callback setter
*/
explicit ta(mac_ta_ue_interface* parent_) : parent(parent_), meas_values(MAX_NOF_MEAS)
{
/// Initial FSM run
run_fsm();
}
/**
* Gives an start order to the FSM
*/
void start()
{
// Transition to idle only if the current state is idle
if (state == state_idle) {
state = state_measure;
}
}
/**
* Pushes TA measurement and runs internal FSM
*
* @param ta_us actual TA measurement in microseconds
* @return the number of MAC CE carrying TA
*/
uint32_t push_value(float ta_us)
{
// Put measurement if state is measurement
if (state == state_measure) {
// Set measurement
meas_values[meas_idx].ts_ms = meas_t_ms;
meas_values[meas_idx].ta_us = ta_us;
// Increase pointer
meas_idx = (meas_idx + 1) % static_cast<uint32_t>(meas_values.size());
// Increase count
if (meas_count < static_cast<uint32_t>(meas_values.size())) {
meas_count++;
}
}
// Run state machine
return run_fsm();
}
/**
* Increments internal timer 1 ms and runs internal FSM
*
* @param ta_us actual TA measurement in microseconds
* @return the number of MAC CE carrying TA
*/
uint32_t tick()
{
// Increase measurement timestamp counter
meas_t_ms++;
// Run state machine
return run_fsm();
}
};
} // namespace srsenb
#endif // SRSENB_TA_H