You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/asn1/asn1_utils_test.cc

706 lines
21 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsran/asn1/asn1_utils.h"
#include "srsran/common/test_common.h"
#include <cmath>
#include <numeric>
#include <random>
using namespace std;
using namespace asn1;
std::random_device rd;
std::mt19937 g(rd());
srsran::log_sink_spy* test_spy = nullptr;
int test_arrays()
{
/* Test Ext Array */
ext_array<int> ext_ar;
const int* old_ptr = ext_ar.data();
// Test Resize until goes out of small buffer
for (uint32_t i = 0; i < ext_ar.small_buffer_size + 1; ++i) {
TESTASSERT(ext_ar.is_in_small_buffer());
TESTASSERT(ext_ar.capacity() == ext_ar.small_buffer_size);
TESTASSERT(ext_ar.size() == i);
ext_ar.push_back(i);
}
TESTASSERT(not ext_ar.is_in_small_buffer());
TESTASSERT(ext_ar.size() == ext_ar.small_buffer_size + 1);
TESTASSERT(old_ptr != ext_ar.data());
TESTASSERT(ext_ar.capacity() > ext_ar.small_buffer_size);
// Test Copy
{
ext_array<int> ext_ar2(ext_ar);
TESTASSERT(ext_ar2 == ext_ar);
TESTASSERT(not ext_ar.is_in_small_buffer());
}
TESTASSERT(ext_ar.size() == 5);
// Test Move
{
ext_array<int> ext_ar2(std::move(ext_ar));
TESTASSERT(ext_ar.is_in_small_buffer());
TESTASSERT(ext_ar2.size() == 5);
TESTASSERT(ext_ar2[2] == 2);
}
ext_ar = ext_array<int>(5);
TESTASSERT(not ext_ar.is_in_small_buffer());
TESTASSERT(ext_ar.size() == 5);
ext_ar.resize(0);
TESTASSERT(not ext_ar.is_in_small_buffer());
return 0;
}
int test_bit_ref()
{
uint8_t buf[1024];
// one bit at a time
{
uint32_t nof_bytes = 2;
bit_ref bref(&buf[0], nof_bytes);
bit_ref bref0 = bref;
for (uint32_t i = 0; i < 8 * nof_bytes; ++i) {
bref.pack(i, 1);
}
uint8_t a[] = {85, 85};
TESTASSERT(bref.distance(bref0) / 8 == (int)nof_bytes);
TESTASSERT(memcmp(a, buf, nof_bytes) == 0);
bit_ref bref2(&buf[0], nof_bytes);
for (uint32_t i = 0; i < 8 * nof_bytes; ++i) {
bool val;
bref2.unpack(val, 1);
TESTASSERT((i & 1) == val);
}
}
// three bits at a time
{
uint32_t nof_bytes = 3;
bit_ref bref(&buf[0], nof_bytes);
bit_ref bref0 = bref;
for (uint32_t i = 0; i < 8 * nof_bytes / 3; ++i) {
bref.pack(i, 3);
}
uint8_t a[] = {5, 57, 119};
TESTASSERT(bref.distance(bref0) / 8 == (int)nof_bytes);
TESTASSERT(memcmp(a, buf, nof_bytes) == 0);
bit_ref bref2(&buf[0], nof_bytes);
for (uint32_t i = 0; i < 8 * nof_bytes / 3; ++i) {
uint32_t val;
bref2.unpack(val, 3);
TESTASSERT((i & 7) == val);
}
}
// 16 bits at a time
{
uint32_t nof_bytes = 32, bitstride = 16;
uint32_t start = 256, mask = (1u << bitstride) - 1u;
bit_ref bref(&buf[0], nof_bytes);
for (uint32_t i = 0; i < 8 * nof_bytes / bitstride; ++i) {
bref.pack(i + start, bitstride);
}
uint8_t a[] = {1, 0, 1, 1, 1, 2, 1, 3, 1, 4};
TESTASSERT(bref.distance_bytes() == (int32_t)nof_bytes);
TESTASSERT(memcmp(a, buf, sizeof(a)) == 0);
bit_ref bref2(&buf[0], nof_bytes);
for (uint32_t i = 0; i < 8 * nof_bytes / bitstride; ++i) {
uint32_t val;
bref2.unpack(val, bitstride);
TESTASSERT(((i + start) & mask) == val);
}
}
// pack bytes aligned
{
uint32_t nof_bytes = 512;
uint32_t start = 1;
bit_ref bref(&buf[0], sizeof(buf));
uint8_t buf2[1024];
for (uint32_t i = 0; i < sizeof(buf2); ++i) {
buf2[i] = start + i;
}
TESTASSERT(bref.pack_bytes(buf2, nof_bytes) == SRSASN_SUCCESS);
TESTASSERT(bref.distance_bytes() == (int)nof_bytes);
TESTASSERT(memcmp(buf2, buf, bref.distance_bytes()) == 0);
bit_ref bref2(&buf[0], sizeof(buf));
TESTASSERT(bref2.unpack_bytes(&buf2[0], nof_bytes) == SRSASN_SUCCESS);
TESTASSERT(bref2.distance_bytes() == (int)nof_bytes);
TESTASSERT(memcmp(buf2, buf, bref.distance_bytes()) == 0);
}
// pack bytes unaligned
{
uint32_t nof_bytes = 128;
uint32_t start = 1;
bit_ref bref(&buf[0], sizeof(buf));
uint8_t buf2[1024], buf3[1024];
for (uint32_t i = 0; i < sizeof(buf2); ++i) {
buf2[i] = start + i;
}
bzero(buf3, sizeof(buf3));
// this unaligns
TESTASSERT(bref.pack(0, 1) == SRSASN_SUCCESS);
TESTASSERT(bref.pack_bytes(buf2, nof_bytes) == SRSASN_SUCCESS);
TESTASSERT(bref.distance_bytes() == (int)nof_bytes + 1);
uint8_t ar[] = {0, 129, 1, 130, 2, 131, 3, 132, 4, 133, 5};
TESTASSERT(memcmp(ar, buf, sizeof(ar)) == 0);
bit_ref bref2(&buf[0], sizeof(buf));
uint32_t val;
TESTASSERT(bref2.unpack(val, 1) == SRSASN_SUCCESS);
TESTASSERT(val == 0);
TESTASSERT(bref2.unpack_bytes(&buf3[0], nof_bytes) == SRSASN_SUCCESS);
TESTASSERT(bref2.distance_bytes() == (int)nof_bytes + 1);
TESTASSERT(bref2.distance_bytes() == bref.distance_bytes());
TESTASSERT(memcmp(buf2, buf3, nof_bytes) == 0);
}
// test advance bits
{
bit_ref bref(&buf[0], sizeof(buf));
TESTASSERT(bref.advance_bits(4) == SRSASN_SUCCESS);
TESTASSERT(bref.distance() == 4);
TESTASSERT(bref.advance_bits(4) == SRSASN_SUCCESS);
TESTASSERT(bref.distance() == 8);
TESTASSERT(bref.advance_bits(3) == SRSASN_SUCCESS);
TESTASSERT(bref.distance() == 11);
TESTASSERT(bref.advance_bits(200) == SRSASN_SUCCESS);
TESTASSERT(bref.distance() == 211);
TESTASSERT(bref.advance_bits(5) == SRSASN_SUCCESS);
TESTASSERT(bref.distance() == 216);
}
return 0;
}
int test_oct_string()
{
uint8_t buf[1024];
bit_ref b(&buf[0], sizeof(buf));
cbit_ref b2(&buf[0], sizeof(buf));
bit_ref borig(b);
std::string hexstr = "014477aaff";
fixed_octstring<5> statstr;
dyn_octstring dynstr;
statstr.from_string(hexstr);
dynstr.from_string(hexstr);
TESTASSERT(sizeof(statstr) == statstr.size());
TESTASSERT(statstr.size() == 5);
TESTASSERT(dynstr.size() == 5);
TESTASSERT(dynstr[0] == 1);
TESTASSERT(statstr[4] == 255);
TESTASSERT(statstr.to_string() == hexstr);
TESTASSERT(statstr.to_string() == dynstr.to_string());
TESTASSERT(statstr.to_number() == dynstr.to_number());
// check endianess
TESTASSERT(statstr.to_number() == 5443660543);
TESTASSERT(dynstr.to_number() == 5443660543);
dynstr.from_number(dynstr.to_number());
TESTASSERT(dynstr.to_number() == 5443660543);
statstr.pack(b);
TESTASSERT(memcmp(&buf[0], &statstr[0], statstr.size()) == 0);
TESTASSERT(b.distance(borig) == (int)statstr.size() * 8);
fixed_octstring<5> statstr2;
b2 = cbit_ref(&buf[0], sizeof(buf));
statstr2.unpack(b2);
TESTASSERT(statstr == statstr2);
b = borig;
dynstr.pack(b);
TESTASSERT(buf[0] == dynstr.size()); // true for small strings
TESTASSERT(memcmp(&buf[1], &dynstr[0], dynstr.size()) == 0);
TESTASSERT(b.distance(borig) == (int)(dynstr.size() * 8 + 8));
dyn_octstring dynstr2; // unpacker allocates automatically
b2 = cbit_ref(&buf[0], sizeof(buf));
dynstr2.unpack(b2);
TESTASSERT(dynstr == dynstr2);
// test copy ctor
{
fixed_octstring<5> statcopy(statstr);
TESTASSERT(statcopy == statstr);
}
{
dyn_octstring scopy(dynstr);
TESTASSERT(scopy == dynstr);
}
b.pack(1, 1);
TESTASSERT(b.distance(borig) == (int)(hexstr.size() * 8 / 2 + 9));
b.align_bytes_zero();
TESTASSERT(b.distance(borig) == (int)(hexstr.size() * 8 / 2 + 16));
return 0;
}
int test_bitstring()
{
fixed_bitstring<10> bstr1;
bounded_bitstring<5, 15> bound_bstr1(10);
dyn_bitstring dyn_bstr1(10);
bstr1.set(7, true);
bstr1.set(9, true);
bound_bstr1.set(7, true);
bound_bstr1.set(9, true);
dyn_bstr1.set(7, true);
dyn_bstr1.set(9, true);
/* Test BitSet and BitGet and Length */
// fixed
TESTASSERT(bstr1.length() == 10);
TESTASSERT(bstr1.get(7));
TESTASSERT(bstr1.get(9));
TESTASSERT(not bstr1.get(8));
TESTASSERT(not bstr1.get(0));
// bounded
TESTASSERT(bound_bstr1.length() == 10);
TESTASSERT(bound_bstr1.get(7));
TESTASSERT(bound_bstr1.get(9));
TESTASSERT(not bound_bstr1.get(8));
TESTASSERT(not bound_bstr1.get(0));
// dyn
TESTASSERT(dyn_bstr1.length() == 10);
TESTASSERT(dyn_bstr1.get(7));
TESTASSERT(dyn_bstr1.get(9));
TESTASSERT(not dyn_bstr1.get(8));
TESTASSERT(not dyn_bstr1.get(0));
/* Test Copy, Dtor, and Equal Comparison */
{
// fixed
fixed_bitstring<10> bstr2;
bstr2 = bstr1;
TESTASSERT(bstr2 == bstr1);
// bound
bounded_bitstring<5, 15> bound_bstr2;
bound_bstr2 = bound_bstr1;
TESTASSERT(bound_bstr2 == bound_bstr1);
// dyn
dyn_bitstring dyn_bstr2(10);
dyn_bstr2 = dyn_bstr1;
TESTASSERT(dyn_bstr2 == dyn_bstr1);
// dtors called
}
/* Test Number and String conversion */
// fixed
TESTASSERT(bstr1.to_string() == "1010000000");
TESTASSERT(bstr1.to_number() == 640);
bstr1.set(1, true);
TESTASSERT(bstr1.to_string() == "1010000010");
TESTASSERT(bstr1.to_number() == 642);
TESTASSERT(bstr1 == fixed_bitstring<10>().from_number(642));
// bounded
TESTASSERT(bound_bstr1.to_string() == "1010000000");
TESTASSERT(bound_bstr1.to_number() == 640);
bound_bstr1.set(1, true);
TESTASSERT(bound_bstr1.to_string() == "1010000010");
TESTASSERT(bound_bstr1.to_number() == 642);
TESTASSERT((bound_bstr1 == bounded_bitstring<5, 15>().from_number(642)));
TESTASSERT((bound_bstr1 == bounded_bitstring<5, 15>().from_string("1010000010")));
// dyn
TESTASSERT(dyn_bstr1.to_string() == "1010000000");
TESTASSERT(dyn_bstr1.to_number() == 640);
dyn_bstr1.set(1, true);
TESTASSERT(dyn_bstr1.to_string() == "1010000010");
TESTASSERT(dyn_bstr1.to_number() == 642);
TESTASSERT(dyn_bstr1 == dyn_bitstring().from_number(642));
TESTASSERT(dyn_bstr1 == dyn_bitstring().from_string("1010000010"));
// zero case
TESTASSERT(bound_bstr1.from_number(0) == "00000");
/* Test Resize */
bound_bstr1.resize(11);
TESTASSERT(not bound_bstr1.get(9)); // resets content
TESTASSERT(bound_bstr1.length() == 11);
bound_bstr1.set(9, true);
dyn_bstr1.resize(11);
TESTASSERT(not dyn_bstr1.get(9));
TESTASSERT(dyn_bstr1.length() == 11);
dyn_bstr1.set(9, true);
TESTASSERT(dyn_bstr1.get(9));
TESTASSERT(not dyn_bstr1.get(10));
/* Test Packing/Unpacking */
uint8_t buffer[1024];
bit_ref bref(&buffer[0], sizeof(buffer));
cbit_ref bref2(&buffer[0], sizeof(buffer));
// fixed
TESTASSERT(bstr1.pack(bref) == SRSASN_SUCCESS);
fixed_bitstring<10> bstr2;
TESTASSERT(bstr2.length() == 10);
TESTASSERT(bstr2.unpack(bref2) == SRSASN_SUCCESS);
TESTASSERT(bstr2 == bstr1);
TESTASSERT(bref.distance() == 10 and bref.distance() == bref2.distance());
// bounded
bref = bit_ref(&buffer[0], sizeof(buffer));
bref2 = cbit_ref(&buffer[0], sizeof(buffer));
TESTASSERT(bound_bstr1.pack(bref) == SRSASN_SUCCESS);
bounded_bitstring<5, 15> bound_bstr2(dyn_bstr1.length());
TESTASSERT(bound_bstr2.length() == 11);
TESTASSERT(bound_bstr2.unpack(bref2) == SRSASN_SUCCESS);
TESTASSERT(bound_bstr2 == bound_bstr1);
TESTASSERT(bref.distance() == (11 + 4) and bref.distance() == bref2.distance());
// dyn
bref = bit_ref(&buffer[0], sizeof(buffer));
bref2 = cbit_ref(&buffer[0], sizeof(buffer));
TESTASSERT(dyn_bstr1.pack(bref) == SRSASN_SUCCESS);
dyn_bitstring dyn_bstr2(dyn_bstr1.length());
TESTASSERT(dyn_bstr2.length() == 11);
TESTASSERT(dyn_bstr2.unpack(bref2) == SRSASN_SUCCESS);
TESTASSERT(dyn_bstr2 == dyn_bstr1);
// printf("%s==%s\n", dyn_bstr1.to_string().c_str(), dyn_bstr2.to_string().c_str());
// disable temporarily the prints to check failures
// srsran::nullsink_log null_log("NULL");
// bit_ref bref3(&buffer[0], sizeof(buffer));
// TESTASSERT(dyn_bstr1.pack(bref3, false, 5, 10)==SRSASN_ERROR_ENCODE_FAIL);
/* Test Pack/Unpack 2 */
buffer[0] = 0;
buffer[1] = 7;
bref2 = cbit_ref(&buffer[0], sizeof(buffer));
fixed_bitstring<16> bstr3;
bstr3.unpack(bref2);
TESTASSERT(bstr3 == "0000000000000111");
TESTASSERT(bstr3.to_string() == "0000000000000111");
return 0;
}
int test_seq_of()
{
uint8_t buf[1024];
memset(buf, 0, 1024);
bit_ref b(&buf[0], sizeof(buf));
bit_ref borig = b;
cbit_ref borig2(&buf[0], sizeof(buf));
uint32_t fixed_list_size = 33;
std::array<uint32_t, 33> fixed_list = {};
for (uint32_t i = 0; i < fixed_list_size; ++i) {
fixed_list[i] = i;
}
{
// test copy and ==
std::array<uint32_t, 33> fixed_list2 = fixed_list;
TESTASSERT(fixed_list == fixed_list2);
}
int lb = 0, ub = 40;
uint32_t n_bits = ceil(log2(ub - lb + 1));
pack_fixed_seq_of(b, &fixed_list[0], fixed_list.size(), integer_packer<uint32_t>(lb, ub, false));
TESTASSERT(b.distance(borig) == (int)(fixed_list_size * n_bits));
cbit_ref b2(&buf[0], sizeof(buf));
std::array<uint32_t, 33> fixed_list2;
unpack_fixed_seq_of(&fixed_list2[0], b2, fixed_list.size(), integer_packer<uint32_t>(lb, ub, false));
TESTASSERT(fixed_list == fixed_list2);
// bounded seq_of
bounded_array<uint32_t, 33> bseq;
TESTASSERT(bseq.size() == 0);
bseq.resize(fixed_list_size);
TESTASSERT(bseq.size() == fixed_list_size);
memcpy(&bseq[0], &fixed_list[0], fixed_list_size * sizeof(uint32_t));
b = borig;
pack_dyn_seq_of(b, bseq, 0, 33, integer_packer<uint32_t>(lb, ub, false));
TESTASSERT(b.distance(borig) == (int)((fixed_list_size + 1) * n_bits)); // unaligned
// TESTASSERT(b.distance(borig)==fixed_list_size*n_bits+8); // aligned
bounded_array<uint32_t, 33> bseq2;
bseq2.resize(fixed_list_size);
b2 = borig2;
unpack_dyn_seq_of(bseq2, b2, 0, 33, integer_packer<uint32_t>(lb, ub, false));
TESTASSERT(bseq2 == bseq);
TESTASSERT(std::equal(&bseq2[0], &bseq2[fixed_list_size], &fixed_list[0]));
{
bounded_array<uint32_t, 33> bseq3;
bseq3 = bseq;
TESTASSERT(bseq == bseq3);
// call dtor
}
TESTASSERT(bseq2 == bseq);
// dynamic array
dyn_array<int> vec, vec2(33);
std::iota(vec2.begin(), vec2.end(), 0);
std::shuffle(vec2.begin(), vec2.end(), g);
TESTASSERT(vec2.size() == 33);
TESTASSERT(vec.size() == 0);
vec.resize(32);
std::iota(vec.begin(), vec.end(), 0);
std::shuffle(vec.begin(), vec.end(), g);
TESTASSERT(vec.size() == 32);
vec[5] = 5;
vec.push_back(33);
TESTASSERT(vec.size() == 33);
TESTASSERT(vec[5] == 5); // resize does not affect content
int* pos = &vec[5];
vec.resize(10);
TESTASSERT(vec.size() == 10); // reduction in size does not cause realloc
TESTASSERT(pos == &vec[5]);
{
dyn_array<int> vec3 = vec2;
TESTASSERT(vec3.size() == vec2.size());
TESTASSERT(std::equal(vec3.begin(), vec3.end(), vec2.begin()));
vec3 = vec;
TESTASSERT(vec3.size() == vec.size());
TESTASSERT(std::equal(vec3.begin(), vec3.end(), vec.begin()));
}
TESTASSERT(vec[5] == 5);
return 0;
}
int test_copy_ptr()
{
typedef fixed_octstring<10> TestType;
char buffer[1024];
uint32_t N = 10;
for (uint32_t i = 0; i < N; ++i) {
buffer[i] = i;
}
TestType* s = new fixed_octstring<10>();
copy_ptr<TestType> cptr(s);
copy_ptr<TestType> cptr2;
memcpy(&(*cptr)[0], buffer, N);
TESTASSERT(cptr2.get() == NULL);
TESTASSERT(memcmp(&(*s)[0], buffer, s->size()) == 0);
TESTASSERT(*cptr == *s);
TESTASSERT(cptr.get() == s);
TESTASSERT(memcmp(&(*cptr)[0], buffer, cptr->size()) == 0);
TESTASSERT(cptr2.get() == NULL);
TESTASSERT(cptr.get() != NULL);
{
copy_ptr<TestType> cptr3 = cptr;
TESTASSERT(cptr3 == cptr);
TESTASSERT(*cptr3 == *s);
TESTASSERT(cptr3.get() != cptr.get()); // different addresses
TESTASSERT(memcmp(&(*cptr3)[0], buffer, cptr3->size()) == 0);
// call dtor
}
TESTASSERT(*cptr == *s);
// Test make_copy_ptr() function. It has the potential to hide all news from the code.
TestType s2(*s);
copy_ptr<TestType> cptr3 = make_copy_ptr(s2);
TESTASSERT(cptr3.get() != &s2);
TESTASSERT(cptr3 == cptr);
// get raw pointer and delete manually
TestType* s3 = cptr.release();
TESTASSERT(s3 == s); // same address
delete s3; // it should *not* double free
return 0;
}
class EnumTest
{
public:
enum options { test5, test10, test20, nulltype };
options value;
static const uint32_t nof_types = 3, nof_exts = 0;
static const bool has_ext = false;
EnumTest() {}
EnumTest(options v) : value(v) {}
EnumTest& operator=(options v)
{
value = v;
return *this;
}
operator uint8_t() { return (uint8_t)value; }
std::string to_string() const
{
switch (value) {
case test5:
return "test5";
case test10:
return "test10";
case test20:
return "test20";
default:
printf("invalid value\n");
}
return "";
}
int32_t to_number() const
{
switch (value) {
case test5:
return 5;
case test10:
return 10;
case test20:
return 20;
default:
printf("invalid value\n");
}
return -1;
}
};
int test_enum()
{
EnumTest e;
EnumTest e2;
e = EnumTest::test10;
TESTASSERT(e.nof_types == 3);
TESTASSERT(e.to_string() == "test10");
TESTASSERT(e.to_number() == 10);
TESTASSERT(string_to_enum<EnumTest>(e2, "test10"));
TESTASSERT(e2 == e);
TESTASSERT(number_to_enum<EnumTest>(e2, 10));
TESTASSERT(e2 == e);
uint8_t buffer[1024];
bit_ref bref(&buffer[0], sizeof(buffer));
bit_ref borig = bref;
TESTASSERT(pack_enum(bref, e) == SRSASN_SUCCESS);
TESTASSERT(bref.distance(borig) == (int)(floor(log2(e.nof_types)) + 1));
cbit_ref bref2(&buffer[0], sizeof(buffer));
TESTASSERT(unpack_enum(e2, bref2) == SRSASN_SUCCESS);
TESTASSERT(bref2.distance() == (int)bref.distance());
TESTASSERT(e == e2);
// Test fail path
TESTASSERT(test_spy->get_error_counter() == 0 and test_spy->get_warning_counter() == 0);
bref = bit_ref(&buffer[0], sizeof(buffer));
bref2 = cbit_ref(&buffer[0], sizeof(buffer));
e = EnumTest::nulltype;
TESTASSERT(pack_enum(bref, e) == SRSASN_ERROR_ENCODE_FAIL);
buffer[0] = 255;
TESTASSERT(unpack_enum(e, bref2) == SRSASN_ERROR_DECODE_FAIL);
TESTASSERT(test_spy->get_error_counter() == 2 and test_spy->get_warning_counter() == 0);
return 0;
}
int test_json_writer()
{
json_writer writer;
writer.start_array("");
writer.start_obj("");
writer.start_obj("obj1");
writer.write_str("field1", "01010101");
writer.write_int("field2", 5);
writer.write_bool("field3", true);
writer.start_obj("obj2");
writer.write_int("field4", 1);
writer.start_obj("obj3");
writer.end_obj();
writer.start_array("array1");
writer.end_array();
writer.end_obj();
writer.end_obj();
writer.end_obj();
writer.end_array();
printf("%s\n", writer.to_string().c_str());
return 0;
}
int test_big_integers()
{
integer<uint64_t, 0, 4294967295, false, true> big_integer = 3172073535;
uint8_t mem_chunk[128];
bit_ref bref(&mem_chunk[0], sizeof(mem_chunk));
TESTASSERT(big_integer.pack(bref) == 0);
uint8_t bytes[] = {0xC0, 0xBD, 0x12, 0x00, 0x3F};
TESTASSERT(memcmp(bytes, mem_chunk, sizeof(bytes)) == 0);
integer<uint64_t, 0, 4294967295, false, true> big_integer2;
cbit_ref cbref(mem_chunk, sizeof(mem_chunk));
TESTASSERT(big_integer2.unpack(cbref) == 0);
TESTASSERT(big_integer == big_integer2);
return 0;
}
void test_varlength_field_pack()
{
uint8_t buffer[128];
bit_ref bref(&buffer[0], sizeof(buffer));
TESTASSERT_EQ(SRSRAN_SUCCESS, bref.pack(0, 1));
TESTASSERT_EQ(1, bref.distance());
{
varlength_field_pack_guard guard(bref);
TESTASSERT_EQ(0, bref.distance());
bref.pack(0, 8);
TESTASSERT_EQ(1, bref.distance_bytes());
}
TESTASSERT_EQ(17, bref.distance()); // accounts for length determinant and 1 byte of data
}
int main()
{
// Setup the log spy to intercept error and warning log entries.
if (!srslog::install_custom_sink(
srsran::log_sink_spy::name(),
std::unique_ptr<srsran::log_sink_spy>(new srsran::log_sink_spy(srslog::get_default_log_formatter())))) {
return SRSRAN_ERROR;
}
test_spy = static_cast<srsran::log_sink_spy*>(srslog::find_sink(srsran::log_sink_spy::name()));
if (!test_spy) {
return SRSRAN_ERROR;
}
auto& asn1_logger = srslog::fetch_basic_logger("ASN1", *test_spy, false);
asn1_logger.set_level(srslog::basic_levels::debug);
asn1_logger.set_hex_dump_max_size(-1);
// Start the log backend.
srslog::init();
TESTASSERT(test_arrays() == 0);
TESTASSERT(test_bit_ref() == 0);
TESTASSERT(test_oct_string() == 0);
TESTASSERT(test_bitstring() == 0);
TESTASSERT(test_seq_of() == 0);
TESTASSERT(test_copy_ptr() == 0);
TESTASSERT(test_enum() == 0);
TESTASSERT(test_big_integers() == 0);
test_varlength_field_pack();
// TESTASSERT(test_json_writer()==0);
srslog::flush();
printf("Success\n");
}