You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

282 lines
7.9 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The libLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the libLTE library.
*
* libLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <complex.h>
#include <math.h>
#include "liblte/phy/sync/pss.h"
#include "liblte/phy/utils/dft.h"
#include "liblte/phy/utils/vector.h"
#include "liblte/phy/utils/convolution.h"
#include "liblte/phy/utils/debug.h"
int pss_synch_init_N_id_2(cf_t *pss_signal_freq, uint32_t N_id_2, uint32_t fft_size) {
dft_plan_t plan;
cf_t pss_signal_pad[2048];
cf_t pss_signal_time[PSS_LEN];
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (lte_N_id_2_isvalid(N_id_2) &&
fft_size <= 2048)
{
pss_generate(pss_signal_time, N_id_2);
bzero(pss_signal_pad, fft_size * sizeof(cf_t));
bzero(pss_signal_freq, fft_size * sizeof(cf_t));
memcpy(&pss_signal_pad[(fft_size-PSS_LEN)/2], pss_signal_time, PSS_LEN * sizeof(cf_t));
if (dft_plan(&plan, fft_size, BACKWARD, COMPLEX)) {
return LIBLTE_ERROR;
}
dft_plan_set_mirror(&plan, true);
dft_plan_set_dc(&plan, true);
dft_plan_set_norm(&plan, true);
dft_run_c(&plan, pss_signal_pad, pss_signal_freq);
vec_conj_cc(pss_signal_freq, pss_signal_freq, fft_size);
vec_sc_prod_cfc(pss_signal_freq, 1.0/62.0, pss_signal_freq, fft_size);
dft_plan_free(&plan);
ret = LIBLTE_SUCCESS;
}
return ret;
}
/* Initializes the PSS synchronization object with fft_size=128
*/
int pss_synch_init(pss_synch_t *q, uint32_t frame_size) {
return pss_synch_init_fft(q, frame_size, 128);
}
/* Initializes the PSS synchronization object.
*
* It correlates a signal of frame_size samples with the PSS sequence in the frequency
* domain. The PSS sequence is transformed using fft_size samples.
*/
int pss_synch_init_fft(pss_synch_t *q, uint32_t frame_size, uint32_t fft_size) {
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (q != NULL) {
uint32_t N_id_2;
uint32_t buffer_size;
bzero(q, sizeof(pss_synch_t));
q->N_id_2 = 10;
q->fft_size = fft_size;
q->frame_size = frame_size;
buffer_size = fft_size + frame_size + 1;
q->tmp_input = vec_malloc(buffer_size * sizeof(cf_t));
if (!q->tmp_input) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
q->conv_output = vec_malloc(buffer_size * sizeof(cf_t));
if (!q->conv_output) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
for (N_id_2=0;N_id_2<3;N_id_2++) {
q->pss_signal_freq[N_id_2] = vec_malloc(buffer_size * sizeof(cf_t));
if (!q->pss_signal_freq[N_id_2]) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
/* The PSS is translated into the frequency domain for each N_id_2 */
if (pss_synch_init_N_id_2(q->pss_signal_freq[N_id_2], N_id_2, fft_size)) {
fprintf(stderr, "Error initiating PSS detector for N_id_2=%d fft_size=%d\n", N_id_2, fft_size);
goto clean_and_exit;
}
}
#ifdef CONVOLUTION_FFT
if (conv_fft_cc_init(&q->conv_fft, frame_size, fft_size)) {
fprintf(stderr, "Error initiating convolution FFT\n");
goto clean_and_exit;
}
#endif
ret = LIBLTE_SUCCESS;
}
clean_and_exit:
if (ret == LIBLTE_ERROR) {
pss_synch_free(q);
}
return ret;
}
void pss_synch_free(pss_synch_t *q) {
uint32_t i;
if (q) {
for (i=0;i<3;i++) {
if (q->pss_signal_freq[i]) {
free(q->pss_signal_freq[i]);
}
}
#ifdef CONVOLUTION_FFT
conv_fft_cc_free(&q->conv_fft);
#endif
if (q->tmp_input) {
free(q->tmp_input);
}
if (q->conv_output) {
free(q->conv_output);
}
bzero(q, sizeof(pss_synch_t));
}
}
/**
* This function calculates the Zadoff-Chu sequence.
* @param signal Output array.
*/
int pss_generate(cf_t *signal, uint32_t N_id_2) {
int i;
float arg;
const float root_value[] = { 25.0, 29.0, 34.0 };
int root_idx;
int sign = -1;
if (N_id_2 > 2) {
fprintf(stderr, "Invalid N_id_2 %d\n", N_id_2);
return -1;
}
root_idx = N_id_2;
for (i = 0; i < PSS_LEN / 2; i++) {
arg = (float) sign * M_PI * root_value[root_idx]
* ((float) i * ((float) i + 1.0)) / 63.0;
__real__ signal[i] = cosf(arg);
__imag__ signal[i] = sinf(arg);
}
for (i = PSS_LEN / 2; i < PSS_LEN; i++) {
arg = (float) sign * M_PI * root_value[root_idx]
* (((float) i + 2.0) * ((float) i + 1.0)) / 63.0;
__real__ signal[i] = cosf(arg);
__imag__ signal[i] = sinf(arg);
}
return 0;
}
/** 36.211 10.3 section 6.11.1.2
*/
void pss_put_slot(cf_t *pss_signal, cf_t *slot, uint32_t nof_prb, lte_cp_t cp) {
int k;
k = (CP_NSYMB(cp) - 1) * nof_prb * RE_X_RB + nof_prb * RE_X_RB / 2 - 31;
memset(&slot[k - 5], 0, 5 * sizeof(cf_t));
memcpy(&slot[k], pss_signal, PSS_LEN * sizeof(cf_t));
memset(&slot[k + PSS_LEN], 0, 5 * sizeof(cf_t));
}
/** Sets the current N_id_2 value. Returns -1 on error, 0 otherwise
*/
int pss_synch_set_N_id_2(pss_synch_t *q, uint32_t N_id_2) {
if (!lte_N_id_2_isvalid((N_id_2))) {
fprintf(stderr, "Invalid N_id_2 %d\n", N_id_2);
return -1;
} else {
q->N_id_2 = N_id_2;
return 0;
}
}
/** Returns the index of the PSS correlation peak in a subframe.
* The frame starts at corr_peak_pos-subframe_size/2.
* The value of the correlation is stored in corr_peak_value.
*
* Input buffer must be subframe_size long.
*/
int pss_synch_find_pss(pss_synch_t *q, cf_t *input, float *corr_peak_value)
{
int ret = LIBLTE_ERROR_INVALID_INPUTS;
if (q != NULL &&
input != NULL)
{
uint32_t corr_peak_pos;
uint32_t conv_output_len;
if (!lte_N_id_2_isvalid(q->N_id_2)) {
fprintf(stderr, "Error finding PSS peak, Must set N_id_2 first\n");
return LIBLTE_ERROR;
}
bzero(&q->pss_signal_freq[q->N_id_2][q->fft_size], q->frame_size * sizeof(cf_t));
memcpy(q->tmp_input, input, q->frame_size * sizeof(cf_t));
bzero(&q->tmp_input[q->frame_size], q->fft_size * sizeof(cf_t));
/* Correlate input with PSS sequence */
#ifdef CONVOLUTION_FFT
conv_output_len = conv_fft_cc_run(&q->conv_fft, q->tmp_input,
q->pss_signal_freq[q->N_id_2], q->conv_output);
#else
conv_output_len = conv_cc(input, q->pss_signal_freq[q->N_id_2], q->conv_output, q->frame_size, q->fft_size);
#endif
/* Find maximum of the absolute value of the correlation */
corr_peak_pos = vec_max_abs_ci(q->conv_output, conv_output_len-1);
if (corr_peak_value) {
*corr_peak_value = cabsf(q->conv_output[corr_peak_pos]);
}
ret = (int) corr_peak_pos;
}
return ret;
}
/* Returns the CFO estimation given a PSS received sequence
*
* Source: An Efficient CFO Estimation Algorithm for the Downlink of 3GPP-LTE
* Feng Wang and Yu Zhu
*/
float pss_synch_cfo_compute(pss_synch_t* q, cf_t *pss_recv) {
cf_t y0, y1, yr;
y0 = vec_dot_prod_ccc(q->pss_signal_freq[q->N_id_2], pss_recv, q->fft_size/2);
y1 = vec_dot_prod_ccc(&q->pss_signal_freq[q->N_id_2][q->fft_size/2], &pss_recv[q->fft_size/2], q->fft_size/2);
yr = conjf(y0) * y1;
return atan2f(__imag__ yr, __real__ yr) / M_PI;
}