You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1585 lines
50 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/asn1/rrc_asn1_utils.h"
#include "srslte/common/log_filter.h"
#include "srslte/common/mac_pcap.h"
#include "srslte/interfaces/ue_interfaces.h"
#include "srsue/hdr/stack/mac/mac.h"
#include "srsue/hdr/stack/mac/mux.h"
#include <assert.h>
#include <iostream>
#include <string.h>
using namespace srsue;
using namespace srslte;
#define HAVE_PCAP 0
static std::unique_ptr<srslte::mac_pcap> pcap_handle = nullptr;
#define TESTASSERT(cond) \
{ \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return SRSLTE_ERROR; \
} \
}
namespace srslte {
// fake classes
class rlc_dummy : public srsue::rlc_interface_mac
{
public:
rlc_dummy(srslte::log_filter* log_) : received_bytes(0), log(log_) {}
bool has_data(const uint32_t lcid) { return ul_queues[lcid] > 0; }
uint32_t get_buffer_state(const uint32_t lcid) { return ul_queues[lcid]; }
int read_pdu(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes)
{
if (!read_enable) {
return 0;
}
uint32_t len = SRSLTE_MIN(ul_queues[lcid], nof_bytes);
// set payload bytes to LCID so we can check later if the scheduling was correct
memset(payload, lcid > 0 ? lcid : 0xf, len);
// remove from UL queue
ul_queues[lcid] -= len;
return len;
};
void write_pdu(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes)
{
log->debug_hex(payload, nof_bytes, "Received %d B on LCID %d\n", nof_bytes, lcid);
received_bytes += nof_bytes;
};
void write_sdu(uint32_t lcid, uint32_t nof_bytes) { ul_queues[lcid] += nof_bytes; }
void write_pdu_bcch_bch(uint8_t* payload, uint32_t nof_bytes){};
void write_pdu_bcch_dlsch(uint8_t* payload, uint32_t nof_bytes){};
void write_pdu_pcch(uint8_t* payload, uint32_t nof_bytes){};
void write_pdu_mch(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes){};
uint32_t get_received_bytes() { return received_bytes; }
void disable_read() { read_enable = false; }
private:
bool read_enable = true;
uint32_t received_bytes;
srslte::log_filter* log;
// UL queues where key is LCID and value the queue length
std::map<uint32_t, uint32_t> ul_queues;
};
class phy_dummy : public phy_interface_mac_lte
{
public:
phy_dummy() : scell_cmd(0){};
void set_log(srslte::log* log_h) { this->log_h = log_h; }
void reset()
{
last_preamble_idx = 0;
last_target_power = 0;
prach_delay_cnt = 0;
prach_tti = 0;
nof_rar_grants = 0;
rar_temp_rnti = 0;
rar_time_adv = 0;
last_crnti = 0;
prach_transmitted = false;
prach_info_tx = false;
}
void set_prach_tti(uint32_t tti, bool reset_transmitted = true)
{
this->prach_tti = tti;
if (reset_transmitted) {
prach_transmitted = false;
}
}
// phy_interface_mac_lte
void configure_prach_params(){};
void prach_send(uint32_t preamble_idx, int allowed_subframe, float target_power_dbm)
{
prach_delay_cnt = 0;
last_preamble_idx = preamble_idx;
last_target_power = target_power_dbm;
prach_transmitted = true;
prach_info_tx = true;
log_h->info("PRACH will be transmitted at tti=%d, preamble_idx=%d\n", prach_tti, preamble_idx);
}
prach_info_t prach_get_info()
{
prach_info_t info = {};
if (prach_info_tx) {
prach_delay_cnt++;
if (prach_delay_cnt > prach_delay) {
info.tti_ra = prach_tti;
prach_info_tx = false;
info.is_transmitted = true;
log_h->info("PRACH has been transmitted\n");
}
}
return info;
};
void sr_send(){};
int sr_last_tx_tti() { return 0; };
void set_mch_period_stop(uint32_t stop){};
// phy_interface_mac_common
void set_crnti(uint16_t rnti) { last_crnti = rnti; }
void set_timeadv_rar(uint32_t ta_cmd) { rar_time_adv = ta_cmd; }
void set_timeadv(uint32_t ta_cmd){};
void set_activation_deactivation_scell(uint32_t cmd) { scell_cmd = cmd; };
void set_rar_grant(uint8_t grant_payload[SRSLTE_RAR_GRANT_LEN], uint16_t rnti)
{
memcpy(rar_payload, grant_payload, SRSLTE_RAR_GRANT_LEN);
rar_temp_rnti = rnti;
nof_rar_grants++;
}
uint32_t get_current_tti() { return 0; }
float get_phr() { return 0; };
float get_pathloss_db() { return 0; };
// getter for test execution
uint32_t get_scell_cmd() { return scell_cmd; }
// Testing methods
int dl_grant(mac* mac_h, bool ack, uint16_t rnti, uint32_t len, const uint8_t* payload)
{
bool ack_v[SRSLTE_MAX_CODEWORDS] = {ack, 0};
mac_interface_phy_lte::tb_action_dl_t dl_action = {};
mac_interface_phy_lte::mac_grant_dl_t dl_mac_grant = {};
// Send grant to MAC
dl_mac_grant.rnti = rnti;
dl_mac_grant.tb[0].ndi = dl_ndi;
dl_mac_grant.tb[0].ndi_present = true;
dl_mac_grant.tb[0].tbs = len;
mac_h->new_grant_dl(0, dl_mac_grant, &dl_action);
if (ack && !SRSLTE_RNTI_ISRAR(rnti)) {
dl_ndi = !dl_ndi;
}
TESTASSERT(dl_action.tb[0].enabled);
TESTASSERT((int)dl_action.tb[0].rv == dl_mac_grant.tb[0].rv);
// Copy data and send tb_decoded
memcpy(dl_action.tb[0].payload, payload, len);
// print generated PDU
log_h->info_hex(
dl_action.tb[0].payload, dl_mac_grant.tb[0].tbs, "Generated DL PDU (%d B)\n", dl_mac_grant.tb[0].tbs);
#if HAVE_PCAP
pcap_handle->write_dl_crnti(dl_action.tb[0].payload, dl_mac_grant.tb[0].tbs, rnti, true, 1);
#endif
mac_h->tb_decoded(0, dl_mac_grant, ack_v);
return 0;
}
int rar_and_check(mac* mac_h, bool preamble_matches, uint32_t temp_rnti)
{
// Generate RAR to MAC
uint8_t grant[SRSLTE_RAR_GRANT_LEN] = {1};
uint32_t rar_timeadv = 16;
srslte::rar_pdu rar_pdu_msg;
byte_buffer.clear();
rar_pdu_msg.init_tx(&byte_buffer, 7);
if (rar_pdu_msg.new_subh()) {
rar_pdu_msg.get()->set_rapid(preamble_matches ? last_preamble_idx : (last_preamble_idx + 1));
rar_pdu_msg.get()->set_ta_cmd(rar_timeadv);
rar_pdu_msg.get()->set_temp_crnti(temp_rnti);
rar_pdu_msg.get()->set_sched_grant(grant);
}
rar_pdu_msg.write_packet(byte_buffer.msg);
// Send RAR grant to MAC
dl_grant(mac_h, true, get_rar_rnti(), 7, byte_buffer.msg);
// Check MAC passes RAR grant and TA cmd to PHY
if (preamble_matches) {
TESTASSERT(!memcmp(rar_payload, grant, SRSLTE_RAR_GRANT_LEN));
TESTASSERT(rar_temp_rnti == temp_rnti);
TESTASSERT(rar_time_adv == rar_timeadv);
}
return 0;
}
int ul_grant_and_check_tv(mac* mac_h, bool ack, uint16_t rnti, uint32_t len, const uint8_t* tv)
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t ul_mac_grant = {};
// Generate UL Grant
ul_mac_grant.phich_available = !ack;
ul_mac_grant.rnti = rnti;
ul_mac_grant.tb.ndi = ul_ndi;
ul_mac_grant.tb.ndi_present = ack;
ul_mac_grant.tb.tbs = len;
if (ack) {
ul_ndi = !ul_ndi;
}
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac_h->new_grant_ul(0, ul_mac_grant, &ul_action);
// print generated PDU
log_h->info_hex(ul_action.tb.payload, ul_mac_grant.tb.tbs, "Generated UL PDU (%d B)\n", ul_mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, ul_mac_grant.tb.tbs, rnti, true, 1);
#endif
if (tv && ul_action.tb.payload) {
return memcmp(ul_action.tb.payload, tv, len);
} else {
return 0;
}
}
int get_last_preamble() { return last_preamble_idx; }
uint32_t is_prach_transmitted() { return prach_transmitted; }
uint32_t get_rar_rnti() { return (prach_tti % 10) + 1; }
uint16_t get_crnti() { return last_crnti; }
const static uint32_t prach_delay = 5;
private:
uint32_t scell_cmd = 0;
uint32_t prach_delay_cnt = 0;
uint32_t prach_tti = 0;
bool prach_info_tx = false;
bool prach_transmitted = false;
float last_target_power = 0;
int last_preamble_idx = -1;
uint16_t last_crnti = 0;
srslte::log* log_h;
bool ul_ndi = false;
bool dl_ndi = false;
byte_buffer_t byte_buffer;
uint32_t nof_rar_grants = 0;
uint32_t rar_time_adv = 0;
uint16_t rar_temp_rnti = 0;
uint8_t rar_payload[SRSLTE_RAR_GRANT_LEN];
};
class rrc_dummy : public rrc_interface_mac
{
public:
void ho_ra_completed(bool ra_successful)
{
ho_finish = true;
ho_finish_successful = ra_successful;
}
void release_pucch_srs() { printf("%s\n", __FUNCTION__); }
void run_tti(uint32_t tti) { printf("%s\n", __FUNCTION__); }
void ra_problem() { rach_problem++; }
bool ho_finish = false;
bool ho_finish_successful = false;
uint32_t rach_problem = 0;
};
} // namespace srslte
int mac_unpack_test()
{
// This MAC PDU contains three subheaders
const uint32_t mac_header_len = 4;
// Subheader 1 is SCell Activation/Deactivation CE
// - 1 byte SDU payload 0x02
const uint32_t mac_pdu1_len = 1;
// Subheader 2 is for LCID 1
// - 2 bytes SDU payload 0x00 0x08
const uint32_t mac_pdu2_len = 2;
// Subheader 3 is for LCID 3 (RLC AM PDU with 2 B header and 54 B data)
// - 56 bytes SDU payload 0x98 .. 0x89, 0x00, 0x00
const uint32_t mac_pdu3_len = 56;
uint8_t dl_sch_pdu[] = {0x3b, 0x21, 0x02, 0x03, 0x02, 0x00, 0x08, 0x98, 0x1b, 0x45, 0x00, 0x05, 0xda,
0xc7, 0x23, 0x40, 0x00, 0x40, 0x11, 0xe6, 0x9b, 0xc0, 0xa8, 0x03, 0x01, 0xc0,
0xa8, 0x03, 0x02, 0xd8, 0x29, 0x13, 0x89, 0x05, 0xc6, 0x2b, 0x73, 0x00, 0x0d,
0xc3, 0xb3, 0x5c, 0xa3, 0x23, 0xad, 0x00, 0x03, 0x20, 0x1b, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x13, 0x89, 0x00, 0x00};
srslte::log_filter rlc_log("RLC");
srslte::log_filter mac_log("MAC");
srslte::timers timers(64);
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
// create dummy DL action and grant and push MAC PDU
mac_interface_phy_lte::tb_action_dl_t dl_action;
mac_interface_phy_lte::mac_grant_dl_t mac_grant;
bzero(&dl_action, sizeof(dl_action));
bzero(&mac_grant, sizeof(mac_grant));
mac_grant.rnti = 0xbeaf;
mac_grant.tb[0].tbs = sizeof(dl_sch_pdu);
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_dl(cc_idx, mac_grant, &dl_action);
// Copy PDU into provided buffer
bool dl_ack[SRSLTE_MAX_CODEWORDS] = {true, false};
memcpy(dl_action.tb[0].payload, dl_sch_pdu, sizeof(dl_sch_pdu));
dl_action.tb[0].enabled = true;
mac.tb_decoded(cc_idx, mac_grant, dl_ack);
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
timers.step_all();
mac.stop();
// check length of both received RLC PDUs
TESTASSERT(rlc.get_received_bytes() == mac_pdu2_len + mac_pdu3_len);
// check received SCell activation command
TESTASSERT(phy.get_scell_cmd() == 2);
return SRSLTE_SUCCESS;
}
// Basic test with a single padding byte and a 10B SCH SDU
int mac_ul_sch_pdu_test1()
{
const uint8_t tv[] = {0x3f, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(1, 10);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 12; // give room for MAC subheader, SDU and one padding byte
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Basic logical channel prioritization test with 3 SCH SDUs
int mac_ul_logical_channel_prioritization_test1()
{
// PDU layout (21 B in total)
// - 2 B MAC subheader for SCH LCID=1
// - 2 B MAC subheader for SCH LCID=2
// - 1 B MAC subheader for SCH LCID=3
// - 10 B MAC SDU for LCID=1
// - 4 B MAC SDU for LCID=2
// - 2 B MAC SDU for LCID=3
const uint8_t tv[] = {0x21, 0x0a, 0x22, 0x04, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for three LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
config.lcid = 1;
config.lcg = 1;
config.PBR = 10;
config.BSD = 1000; // 1000ms
config.priority = 1; // highest prio
lcids.push_back(config);
config.lcid = 2;
config.lcg = 1;
config.PBR = 4;
config.priority = 2;
lcids.push_back(config);
config.lcid = 3;
config.lcg = 1;
config.PBR = 2;
config.priority = 3;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// run TTI to setup Bj, no UL data available yet, so no BSR should be triggered
mac.run_tti(0);
usleep(200);
// write dummy data for each LCID (except CCCH)
rlc.write_sdu(1, 50);
rlc.write_sdu(2, 40);
rlc.write_sdu(3, 20);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 21; // each LCID has more data to transmit than is available
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Similar test like above but with a much larger UL grant, we expect that each LCID is fully served
int mac_ul_logical_channel_prioritization_test2()
{
// PDU layout (120 B in total)
// - 1 B MAC subheader for Short BSR
// - 2 B MAC subheader for SCH LCID=1
// - 2 B MAC subheader for SCH LCID=2
// - 2 B MAC subheader for SCH LCID=3
// - 1 B MAC subheader for Padding
//
// - 1 B Short BSR
// - 50 B MAC SDU for LCID=1
// - 40 B MAC SDU for LCID=2
// - 20 B MAC SDU for LCID=3
// - 1 B Padding
// =120 N
const uint8_t tv[] = {0x3d, 0x21, 0x32, 0x22, 0x28, 0x23, 0x14, 0x1f, 0x51, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for three LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
config.lcid = 1;
config.lcg = 1;
config.PBR = 10;
config.BSD = 1000; // 1000ms
config.priority = 1; // highest prio
lcids.push_back(config);
config.lcid = 2;
config.lcg = 1;
config.PBR = 4;
config.priority = 2;
lcids.push_back(config);
config.lcid = 3;
config.lcg = 1;
config.PBR = 2;
config.priority = 3;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// write dummy data for each LCID (except CCCH)
rlc.write_sdu(1, 50);
rlc.write_sdu(2, 40);
rlc.write_sdu(3, 20);
// run TTI to setup Bj, BSR should be generated
mac.run_tti(0);
usleep(100);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 120; // each LCID has more data to transmit than is available
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Basic logical channel prioritization test with 2 SCH SDUs
// Using default setting for dedicated bearer
int mac_ul_logical_channel_prioritization_test3()
{
// PDU layout (21 B in total)
// - 2 B MAC subheader for SCH LCID=4
// - 1 B MAC subheader for SCH LCID=3
// - 10 B MAC SDU for LCID=4
// - 8 B MAC SDU for LCID=3
const uint8_t tv[] = {0x24, 0x0a, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for two LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
// The config of DRB1
config.lcid = 3;
config.lcg = 3;
config.PBR = 8; // 8 kByte/s
config.BSD = 100; // 100ms
config.priority = 15;
lcids.push_back(config);
// DRB2
config.lcid = 4;
config.lcg = 1;
config.PBR = 0; // no PBR
config.priority = 7; // higher prio
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// run TTI to setup Bj
mac.run_tti(0);
sleep(1);
// write dummy data for each LCID
rlc.write_sdu(3, 50);
rlc.write_sdu(4, 50);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 21; // each LCID has more data to transmit than is available
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// PDU with single SDU and short BSR
int mac_ul_sch_pdu_with_short_bsr_test()
{
const uint8_t tv[] = {0x3f, 0x3d, 0x01, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for two LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
// The config of DRB1
config.lcid = 3;
config.lcg = 3;
config.PBR = 8;
config.BSD = 100; // 100ms
config.priority = 15;
lcids.push_back(config);
// DRB2
config.lcid = 4;
config.lcg = 1;
config.PBR = 0;
config.priority = 7;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// write dummy data
rlc.write_sdu(1, 10);
// generate TTI
uint32 tti = 0;
mac.run_tti(tti++);
usleep(100);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 14; // give room for MAC subheader, SDU and short BSR
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(tti);
mac.stop();
return SRSLTE_SUCCESS;
}
// PDU with only padding BSR (long BSR) and the rest padding
int mac_ul_sch_pdu_with_padding_bsr_test()
{
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// create UL action and grant and push MAC PDU
{
const uint8_t tv[] = {0x3e, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 10; // give enough room for Padding BSR
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// create UL action and grant and push MAC PDU
{
const uint8_t tv[] = {0x1c, 0x42};
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.pid = 2;
mac_grant.tb.tbs = 2; // give enough room for Padding BSR
int cc_idx = 0;
// Add data to multiple LCID
mac.setup_lcid(1, 1, 1, -1, 0);
mac.setup_lcid(2, 2, 2, -1, 0);
rlc.disable_read();
rlc.write_sdu(1, 10);
rlc.write_sdu(2, 100);
mac.run_tti(1);
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Single byte MAC PDU
int mac_ul_sch_pdu_one_byte_test()
{
const uint8_t tv[] = {0x1f};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(0, 10);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 1;
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Two byte MAC PDU
int mac_ul_sch_pdu_two_byte_test()
{
const uint8_t tv[] = {0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(1, 10);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 2;
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Three byte MAC PDU (Single byte padding, SDU header, 1 B SDU)
int mac_ul_sch_pdu_three_byte_test()
{
const uint8_t tv[] = {0x3f, 0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(1, 1);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 3;
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
struct ra_test {
uint32_t nof_prachs;
uint32_t rar_nof_rapid; // set to zero to don't transmit RAR
uint32_t rar_nof_invalid_rapid;
uint16_t crnti;
uint16_t temp_rnti;
uint32_t nof_msg3_retx;
uint32_t preamble_idx;
int assume_prach_transmitted;
bool send_valid_ul_grant;
bool msg4_enable;
bool msg4_valid_conres;
bool check_ra_successful;
asn1::rrc::rach_cfg_common_s rach_cfg;
};
struct ra_test test;
int run_mac_ra_test(struct ra_test test, mac* mac, phy_dummy* phy, uint32_t* tti_state, srslte::timers* timers)
{
uint32_t tti = *tti_state;
const uint8_t tv_msg3[] = {0x3c, 0x00, 0x01, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f};
const uint8_t tv_msg3_ce[] = {0x1b, 0x00, 0x65};
uint32_t msg4_len = 7;
const uint8_t tv_msg4_nocontres[] = {0x1f, 0x1f};
const uint8_t tv_msg4_valid[] = {0x1c, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f};
const uint8_t tv_msg4_invalid[] = {0x1c, 0x0f, 0x0a, 0x0f, 0x0f, 0x0f, 0x0f};
uint16_t temp_rnti = test.temp_rnti;
bool new_prach = false;
for (uint32_t j = 0; j < test.nof_prachs; j++) {
// In the next TTI, a BSR shall be triggered which triggers SR which triggers PRACH
if (test.assume_prach_transmitted != (int)j) {
phy->set_prach_tti(tti + phy->prach_delay);
mac->run_tti(tti++);
timers->step_all();
}
// Check MAC instructs PHY to transmit PRACH
TESTASSERT(phy->is_prach_transmitted());
// Test preamble index
if (test.preamble_idx) {
TESTASSERT(phy->get_last_preamble() == (int)test.preamble_idx);
} else {
TESTASSERT(phy->get_last_preamble() < test.rach_cfg.preamb_info.nof_ra_preambs.to_number());
}
// TODO: Test power ramping
// Check MAC does not schedule RA-RNTI before window starts
for (uint32_t i = 0; i < phy->prach_delay + 3 - 1; i++) {
mac->run_tti(tti);
TESTASSERT(!SRSLTE_RNTI_ISRAR(mac->get_dl_sched_rnti(tti)));
tti++;
timers->step_all();
}
bool rapid_found = false;
// Check MAC schedules correct RA-RNTI during window
for (uint32_t i = 0; i < test.rach_cfg.ra_supervision_info.ra_resp_win_size.to_number() && !rapid_found; i++) {
mac->run_tti(tti);
TESTASSERT(mac->get_dl_sched_rnti(tti) == phy->get_rar_rnti());
tti++;
timers->step_all();
// Receive RAR
if (test.rar_nof_rapid > 0) {
rapid_found = i >= test.rar_nof_invalid_rapid;
if (phy->rar_and_check(mac, rapid_found, temp_rnti)) {
return -1;
}
}
}
// Run Contention Resolution if received correct RAPID
if (rapid_found) {
// Skip Contention resolution if preamble chosen by network
if (test.preamble_idx) {
break;
}
// Request Msg3 (re)-transmission
for (uint32_t i = 0; i < test.nof_msg3_retx + 1; i++) {
// Step to contention resolution. Make sure timer does not start until Msg3 is transmitted
// and restarts on every retx
for (int j = 0; j < test.rach_cfg.ra_supervision_info.mac_contention_resolution_timer.to_number() - 1; j++) {
mac->run_tti(tti);
TESTASSERT(mac->get_dl_sched_rnti(tti) == (test.crnti ? test.crnti : test.temp_rnti));
tti++;
timers->step_all();
}
if (i == test.rach_cfg.max_harq_msg3_tx) {
phy->set_prach_tti(tti + phy->prach_delay, false);
}
if (test.crnti) {
TESTASSERT(!phy->ul_grant_and_check_tv(mac, i == 0, temp_rnti, 3, tv_msg3_ce));
} else {
TESTASSERT(!phy->ul_grant_and_check_tv(mac, i == 0, temp_rnti, 9, tv_msg3));
}
}
if (test.nof_msg3_retx == test.rach_cfg.max_harq_msg3_tx) {
TESTASSERT(mac->get_dl_sched_rnti(tti) != temp_rnti);
break;
}
for (int i = 0; i < test.rach_cfg.ra_supervision_info.mac_contention_resolution_timer.to_number() - 1; i++) {
mac->run_tti(tti);
TESTASSERT(mac->get_dl_sched_rnti(tti) == (test.crnti ? test.crnti : test.temp_rnti));
tti++;
timers->step_all();
if (test.msg4_enable) {
if (test.crnti) {
// Test a DL grant does not resolve the contention resolution
if (phy->dl_grant(mac, true, test.crnti, 2, tv_msg4_nocontres)) {
return -1;
}
TESTASSERT(phy->get_crnti() != test.crnti);
// UL grant is checked later
if (test.send_valid_ul_grant) {
if (phy->ul_grant_and_check_tv(mac, true, test.crnti, 2, NULL)) {
return -1;
}
break;
} else if ((int)i == test.rach_cfg.ra_supervision_info.mac_contention_resolution_timer.to_number() - 2) {
new_prach = true;
}
} else {
if (phy->dl_grant(
mac, true, temp_rnti, msg4_len, test.msg4_valid_conres ? tv_msg4_valid : tv_msg4_invalid)) {
return -1;
}
if (!test.msg4_valid_conres) {
new_prach = true;
}
break;
}
}
}
}
if (new_prach) {
test.assume_prach_transmitted = (int)j + 1;
phy->set_prach_tti(tti + phy->prach_delay, false);
TESTASSERT(mac->get_dl_sched_rnti(tti) != temp_rnti);
mac->run_tti(tti++);
timers->step_all();
}
}
// RA procedure should be completed here
if (test.check_ra_successful) {
mac->run_tti(tti);
TESTASSERT(phy->get_crnti() == (test.crnti ? test.crnti : test.temp_rnti));
TESTASSERT(mac->get_dl_sched_rnti(tti) == (test.crnti ? test.crnti : test.temp_rnti));
tti++;
timers->step_all();
}
*tti_state = tti;
return 0;
}
/* Tests MAC RA procedure specified in 5.1 of 36.321
* Currently not covered:
* - Selection of groupA/groupB sequences
* - Backoff timer
* - PDCCH order RACH initiation
* - Ignore RAR TA cmd when TA-Timer is running
*/
int mac_random_access_test()
{
uint64_t contention_id = 0xf0f0f0f0f0f;
srslte::log_filter phy_log("PHY");
phy_log.set_level(srslte::LOG_LEVEL_DEBUG);
phy_log.set_hex_limit(100000);
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
srslte::timers timers(64);
// dummy layers
phy_dummy phy;
phy.set_log(&phy_log);
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// Configure default RACH parameters
asn1::rrc::rach_cfg_common_s rach_cfg = {};
rach_cfg.preamb_info.nof_ra_preambs = asn1::rrc::rach_cfg_common_s::preamb_info_s_::nof_ra_preambs_opts::n12;
rach_cfg.ra_supervision_info.preamb_trans_max = asn1::rrc::preamb_trans_max_opts::n8;
rach_cfg.ra_supervision_info.ra_resp_win_size =
asn1::rrc::rach_cfg_common_s::ra_supervision_info_s_::ra_resp_win_size_e_::sf4;
rach_cfg.max_harq_msg3_tx = 2;
rach_cfg.ra_supervision_info.mac_contention_resolution_timer =
asn1::rrc::rach_cfg_common_s::ra_supervision_info_s_::mac_contention_resolution_timer_opts::sf8;
// Configure MAC
mac mac(&mac_log);
mac.init(&phy, &rlc, &rrc, &timers);
srslte::mac_cfg_t mac_cfg;
set_mac_cfg_t_rach_cfg_common(&mac_cfg, rach_cfg);
mac.set_config(mac_cfg);
// generate config for LCIDs in different LCGs than CCCH
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
// The config of DRB1
config.lcid = 3;
config.lcg = 3;
config.PBR = 8;
config.BSD = 100; // 100ms
config.priority = 15;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// Generate Msg3
mac.set_contention_id(contention_id);
rlc.write_sdu(0, 6); // UL-CCCH with Msg3
rlc.write_sdu(3, 100); // DRB data on other LCG
uint32 tti = 0;
// Structure that defines the test to be executed
struct ra_test my_test = {};
uint32_t test_id = 1;
my_test.temp_rnti = 100;
my_test.assume_prach_transmitted = -1;
// Test 1: No RAR is received.
// According to end of 5.1.5, UE sends up to preamb_trans_max upon which indicates RA problem to higher layers
mac_log.info("\n=========== Test %d =============\n", test_id++);
my_test.rach_cfg = rach_cfg;
my_test.nof_prachs = rach_cfg.ra_supervision_info.preamb_trans_max.to_number();
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
// Make sure it triggers RRC signal
mac.run_tti(tti++);
TESTASSERT(rrc.rach_problem == 1);
timers.step_all();
// Reset MAC
mac.reset();
phy.reset();
mac.set_contention_id(contention_id);
// Test 2: RAR received but no matching RAPID
// The UE receives a RAR without a matching RAPID on every RAR response window TTI.
// According to 5.1.5, the RA procedure is considered non successful and tries again
mac_log.info("\n=========== Test %d =============\n", test_id++);
my_test.rar_nof_rapid = 1;
my_test.nof_prachs = 1;
my_test.rar_nof_invalid_rapid = rach_cfg.ra_supervision_info.ra_resp_win_size.to_number();
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
// Test 3: RAR received but no matching RAPID. Test Msg3 retransmissions
// On each HARQ retx, contention resolution timer must be restarted (5.1.5)
// When max-HARQ-msg3-retx, contention not successful
mac_log.info("\n=========== Test %d =============\n", test_id++);
my_test.rar_nof_invalid_rapid = 0;
my_test.nof_msg3_retx = rach_cfg.max_harq_msg3_tx;
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
// Test 4: RAR with valid RAPID. Msg3 transmitted, Msg4 received but invalid ConRes
// Contention resolution is defined in 5.1.5. If ConResID does not match, the ConRes is considered
// not successful and tries again
mac_log.info("\n=========== Test %d =============\n", test_id++);
phy.reset();
my_test.nof_msg3_retx = 0;
my_test.msg4_enable = true;
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
// Test 5: Msg4 received and valid ConRes. In this case a valid ConResID is received and RA procedure is successful
mac_log.info("\n=========== Test %d =============\n", test_id++);
my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate
my_test.msg4_valid_conres = true;
my_test.check_ra_successful = true;
my_test.assume_prach_transmitted = 0;
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
// Test 6: RA with existing C-RNTI (Sends C-RNTI MAC CE)
// The transmission of C-RNTI MAC CE is only done if no CCCH is present (5.1.4).
// To trigger a new RA we have to either generate more data for DRB or wait until BSR-reTX is triggered
rlc.write_sdu(3, 100);
phy.set_crnti(0);
mac_log.info("\n=========== Test %d =============\n", test_id++);
my_test.crnti = my_test.temp_rnti;
my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate
my_test.assume_prach_transmitted = -1;
my_test.send_valid_ul_grant = true;
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
// Test 7: Test Contention based Random Access. This is used eg in HO where preamble is chosen by UE.
// It is similar to Test 5 because C-RNTI is available to the UE when start the RA but
// In this case we will let the procedure expire the Contention Resolution window and make sure
// and RRC HO fail signal is sent to RRC.
mac_log.info("\n=========== Test %d =============\n", test_id++);
phy.set_prach_tti(tti + phy.prach_delay);
phy.set_crnti(0);
mac.start_cont_ho();
mac.run_tti(tti++);
timers.step_all();
rrc.ho_finish = false;
my_test.nof_prachs = rach_cfg.ra_supervision_info.preamb_trans_max.to_number();
my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate
my_test.msg4_valid_conres = false;
my_test.assume_prach_transmitted = 0;
my_test.check_ra_successful = false;
my_test.send_valid_ul_grant = false;
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
TESTASSERT(!rrc.ho_finish_successful && rrc.ho_finish);
// Test 8: Test Contention based Random Access. Same as above but we let the procedure finish successfully.
mac_log.info("\n=========== Test %d =============\n", test_id++);
phy.set_prach_tti(tti + phy.prach_delay);
phy.set_crnti(0);
mac.start_cont_ho();
mac.run_tti(tti++);
timers.step_all();
rrc.ho_finish = false;
my_test.nof_prachs = 1;
my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate
my_test.send_valid_ul_grant = true;
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
TESTASSERT(rrc.ho_finish_successful && rrc.ho_finish);
// Test 9: Test non-Contention based HO. Used in HO but preamble is given by the network. In addition to checking
// that the given preamble is correctly passed to the PHY, in this case there is no contention.
// In this first test, no RAR is received and RA procedure fails
mac_log.info("\n=========== Test %d =============\n", test_id++);
phy.set_prach_tti(tti + phy.prach_delay);
mac.run_tti(tti++);
timers.step_all();
phy.set_crnti(0);
rrc.ho_finish = false;
my_test.preamble_idx = 3;
mac.start_noncont_ho(my_test.preamble_idx, 0);
my_test.nof_prachs = rach_cfg.ra_supervision_info.preamb_trans_max.to_number();
my_test.rar_nof_invalid_rapid = rach_cfg.ra_supervision_info.ra_resp_win_size.to_number();
my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
mac.run_tti(tti++);
timers.step_all();
TESTASSERT(!rrc.ho_finish_successful && rrc.ho_finish);
// Test 10: Test non-Contention based HO. Used in HO but preamble is given by the network. We check that
// the procedure is considered successful without waiting for contention
mac_log.info("\n=========== Test %d =============\n", test_id++);
phy.set_prach_tti(tti + phy.prach_delay);
mac.run_tti(tti++);
timers.step_all();
phy.set_crnti(0);
rrc.ho_finish = false;
my_test.preamble_idx = 3;
mac.start_noncont_ho(my_test.preamble_idx, 0);
my_test.nof_prachs = 1;
my_test.rar_nof_invalid_rapid = 0;
my_test.check_ra_successful = true;
my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate
TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers));
mac.run_tti(tti++);
timers.step_all();
TESTASSERT(rrc.ho_finish_successful && rrc.ho_finish);
mac.stop();
return SRSLTE_SUCCESS;
}
int main(int argc, char** argv)
{
#if HAVE_PCAP
pcap_handle = std::unique_ptr<srslte::mac_pcap>(new srslte::mac_pcap());
pcap_handle->open("mac_test.pcap");
#endif
if (mac_unpack_test()) {
printf("MAC PDU unpack test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_test1()) {
printf("mac_ul_sch_pdu_test1() test failed.\n");
return -1;
}
if (mac_ul_logical_channel_prioritization_test1()) {
printf("mac_ul_logical_channel_prioritization_test1() test failed.\n");
return -1;
}
if (mac_ul_logical_channel_prioritization_test2()) {
printf("mac_ul_logical_channel_prioritization_test2() test failed.\n");
return -1;
}
if (mac_ul_logical_channel_prioritization_test3()) {
printf("mac_ul_logical_channel_prioritization_test3() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_with_short_bsr_test()) {
printf("mac_ul_sch_pdu_with_long_bsr_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_with_padding_bsr_test()) {
printf("mac_ul_sch_pdu_with_padding_bsr_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_one_byte_test()) {
printf("mac_ul_sch_pdu_one_byte_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_two_byte_test()) {
printf("mac_ul_sch_pdu_two_byte_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_three_byte_test()) {
printf("mac_ul_sch_pdu_three_byte_test() test failed.\n");
return -1;
}
if (mac_random_access_test()) {
printf("mac_random_access_test() test failed.\n");
return -1;
}
return 0;
}