You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

529 lines
20 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "pdcp_nr_test.h"
// Encryption and Integrity Keys
uint8_t k_int[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
uint8_t k_enc[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31};
pdcp_security_cfg sec_cfg = {
k_int,
k_enc,
k_int,
k_enc,
srslte::INTEGRITY_ALGORITHM_ID_128_EIA2,
srslte::CIPHERING_ALGORITHM_ID_128_EEA2,
};
// Test SDUs for tx
uint8_t sdu1[] = {0x18, 0xE2};
uint8_t sdu2[] = {0xde, 0xad};
// Test PDUs for rx (generated from SDU1)
uint8_t pdu1[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint8_t pdu2[] = {0x88, 0x00, 0x8d, 0x2c, 0x47, 0x5e, 0xb1, 0x5b};
uint8_t pdu3[] = {0x80, 0x00, 0x97, 0xbe, 0xa3, 0x32, 0xfa, 0x61};
uint8_t pdu4[] = {0x80, 0x00, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92};
uint8_t pdu5[] = {0x82, 0x00, 0x00, 0x15, 0x01, 0xf4, 0xb0, 0xfc, 0xc5};
uint8_t pdu6[] = {0x80, 0x00, 0x00, 0xc2, 0x47, 0xa8, 0xdd, 0xc0, 0x73};
// Test PDUs for rx (generated from SDU2)
uint8_t pdu7[] = {0x80, 0x01, 0x5e, 0x3d, 0x64, 0xaf, 0xac, 0x7c};
// Struct to help initialize pdcp_helper.
struct pdcp_nr_initial_state_cfg {
uint32_t tx_next = 0;
uint32_t rx_next = 0;
uint32_t rx_deliv = 0;
uint32_t rx_reord = 0;
};
/*
* Genric function to test transmission of in-sequence packets
*/
int test_tx(uint32_t n_packets,
uint8_t pdcp_sn_len,
srslte::unique_byte_buffer_t pdu_exp,
srslte::byte_buffer_pool* pool,
srslte::log* log)
{
srslte::pdcp_config_t cfg = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_UPLINK,
srslte::SECURITY_DIRECTION_DOWNLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_hlp(cfg, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp = &pdcp_hlp.pdcp;
rlc_dummy* rlc = &pdcp_hlp.rlc;
// Run test
for (uint32_t i = 0; i < n_packets; ++i) {
// Test SDU
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
sdu->append_bytes(sdu1, sizeof(sdu1));
pdcp->write_sdu(std::move(sdu), true);
}
srslte::unique_byte_buffer_t pdu_act = allocate_unique_buffer(*pool);
rlc->get_last_sdu(pdu_act);
TESTASSERT(compare_two_packets(pdu_act, pdu_exp) == 0);
return 0;
}
/*
* Genric function to test reception of in-sequence packets
*/
int test_rx_in_sequence(uint64_t n_packets, uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_config_t cfg_tx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_UPLINK,
srslte::SECURITY_DIRECTION_DOWNLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_hlp_tx(cfg_tx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_tx = &pdcp_hlp_tx.pdcp;
rlc_dummy* rlc_tx = &pdcp_hlp_tx.rlc;
pdcp_nr_test_helper pdcp_hlp_rx(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_hlp_rx.pdcp;
gw_dummy* gw_rx = &pdcp_hlp_rx.gw;
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool);
sdu_exp->append_bytes(sdu1, sizeof(sdu1));
// Generate test message and encript/decript SDU. Check match with original SDU
for (uint64_t i = 0; i < n_packets; ++i) {
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t pdu = allocate_unique_buffer(*pool);
sdu->append_bytes(sdu_exp->msg, sdu_exp->N_bytes);
// Generate encripted and integrity protected PDU
pdcp_tx->write_sdu(std::move(sdu), true);
rlc_tx->get_last_sdu(pdu);
// Decript and integrity check the PDU
pdcp_rx->write_pdu(std::move(pdu));
gw_rx->get_last_pdu(sdu_act);
// Check if resulting SDU matches original SDU
TESTASSERT(compare_two_packets(sdu_exp,sdu_act) == 0);
}
return 0;
}
/*
* RX Test: PDCP Entity with packtes received out of order
* PDCP entity configured with EIA2 and EEA2
*/
int test_rx_out_of_order(uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_rx_hlp(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_rx_hlp.pdcp;
gw_dummy* gw_rx = &pdcp_rx_hlp.gw;
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool);
sdu_exp->append_bytes(sdu2, sizeof(sdu2));
// Get encripted and integrity protected PDUs used for testing
srslte::unique_byte_buffer_t rx_pdu1 = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t rx_pdu7 = allocate_unique_buffer(*pool);
rx_pdu1->append_bytes(pdu1, sizeof(pdu1));
rx_pdu7->append_bytes(pdu7, sizeof(pdu7));
// decript and check matching SDUs (out of order)
pdcp_rx->write_pdu(std::move(rx_pdu7));
pdcp_rx->write_pdu(std::move(rx_pdu1));
gw_rx->get_last_pdu(sdu_act);
TESTASSERT(compare_two_packets(sdu_exp, sdu_act) == 0);
return 0;
}
/*
* RX Test: PDCP Entity with packtes received out of order
* PDCP entity configured with EIA2 and EEA2
*/
int test_rx_out_of_order_timeout(uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_rx_hlp(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_rx_hlp.pdcp;
gw_dummy* gw_rx = &pdcp_rx_hlp.gw;
srslte::timers* timers = &pdcp_rx_hlp.timers;
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool);
sdu_exp->append_bytes(sdu2, sizeof(sdu2));
// Generate encripted and integrity protected PDUs
srslte::unique_byte_buffer_t rx_pdu7 = allocate_unique_buffer(*pool);
rx_pdu7->append_bytes(pdu7, sizeof(pdu7));
// decript and check matching SDUs (out of order)
pdcp_rx->write_pdu(std::move(rx_pdu7));
// Make sure out of order is not received until time out
TESTASSERT(gw_rx->rx_count == 0);
// Trigger timer
for (uint16_t i = 0; i < 500; ++i){
timers->step_all();
}
// Make sure timout delivered PDU to GW
TESTASSERT(gw_rx->rx_count == 1);
gw_rx->get_last_pdu(sdu_act);
TESTASSERT(compare_two_packets(sdu_exp, sdu_act) == 0);
return 0;
}
/*
* RX Test: PDCP Entity with packtes received out of order
* PDCP entity configured with EIA2 and EEA2
*/
int test_rx_out_of_order_wraparound(uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_rx_hlp(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_rx_hlp.pdcp;
gw_dummy* gw_rx = &pdcp_rx_hlp.gw;
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool);
sdu_exp->append_bytes(sdu2, sizeof(sdu2));
// Generate encripted and integrity protected PDUs
srslte::unique_byte_buffer_t rx_pdu1 = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t rx_pdu7 = allocate_unique_buffer(*pool);
rx_pdu1->append_bytes(pdu1, sizeof(pdu1));
rx_pdu7->append_bytes(pdu7, sizeof(pdu7));
// decript and check matching SDUs (out of order)
pdcp_rx->write_pdu(std::move(rx_pdu1));
pdcp_rx->write_pdu(std::move(rx_pdu7));
gw_rx->get_last_pdu(sdu_act);
TESTASSERT(compare_two_packets(sdu_exp, sdu_act) == 0);
return 0;
}
int test_rx_out_of_order(uint64_t n_packets, uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_config_t cfg_tx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_UPLINK,
srslte::SECURITY_DIRECTION_DOWNLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_hlp_tx(cfg_tx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_tx = &pdcp_hlp_tx.pdcp;
rlc_dummy* rlc_tx = &pdcp_hlp_tx.rlc;
pdcp_nr_test_helper pdcp_hlp_rx(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_hlp_rx.pdcp;
gw_dummy* gw_rx = &pdcp_hlp_rx.gw;
// Make sure that n_pakets is large enough to reorder
TESTASSERT(n_packets >= 2);
// Generate test message and encript/decript SDU. Check match with original SDU
for (uint64_t i = 0; i < n_packets - 2; ++i) {
srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool);
sdu->append_bytes(sdu1, sizeof(sdu1));
// Generate encripted and integrity protected PDU
pdcp_tx->write_sdu(std::move(sdu), true);
// Decript and integrity check the PDU
srslte::unique_byte_buffer_t pdu = allocate_unique_buffer(*pool);
rlc_tx->get_last_sdu(pdu);
pdcp_rx->write_pdu(std::move(pdu));
}
// Allocate buffers for later comparison.
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool);
// Write PDUs into tx entity to get expected PDUs
srslte::unique_byte_buffer_t tx_sdu_out1 = allocate_unique_buffer(*pool);
tx_sdu_out1->append_bytes(sdu1, sizeof(sdu1));
pdcp_tx->write_sdu(std::move(tx_sdu_out1), true);
srslte::unique_byte_buffer_t tx_pdu_out1 = allocate_unique_buffer(*pool);
rlc_tx->get_last_sdu(tx_pdu_out1);
srslte::unique_byte_buffer_t tx_sdu_out2 = allocate_unique_buffer(*pool);
tx_sdu_out2->append_bytes(sdu2, sizeof(sdu2));
*sdu_exp = *tx_sdu_out2; // save expected SDU
pdcp_tx->write_sdu(std::move(tx_sdu_out2), true);
srslte::unique_byte_buffer_t tx_pdu_out2 = allocate_unique_buffer(*pool);
rlc_tx->get_last_sdu(tx_pdu_out2);
// Write PDUs out-of-order into rx entity to see if re-ordering is OK.
pdcp_rx->write_pdu(std::move(tx_pdu_out2));
pdcp_rx->write_pdu(std::move(tx_pdu_out1));
// Test actual reception
TESTASSERT(gw_rx->rx_count == n_packets);
gw_rx->get_last_pdu(sdu_act);
log->info_hex(sdu_act->msg, sdu_act->N_bytes, "SDU act");
TESTASSERT(compare_two_packets(sdu_act, sdu_exp) == 0);
return 0;
}
int test_rx_with_initial_state(uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log)
{
srslte::pdcp_config_t cfg_rx = {1,
srslte::PDCP_RB_IS_DRB,
srslte::SECURITY_DIRECTION_DOWNLINK,
srslte::SECURITY_DIRECTION_UPLINK,
pdcp_sn_len,
srslte::pdcp_t_reordering_t::ms500};
pdcp_nr_test_helper pdcp_hlp_rx(cfg_rx, sec_cfg, log);
srslte::pdcp_entity_nr* pdcp_rx = &pdcp_hlp_rx.pdcp;
gw_dummy* gw_rx = &pdcp_hlp_rx.gw;
// Set PDCP initial state
struct pdcp_nr_initial_state_cfg initial_state;
initial_state.tx_next = 0;
initial_state.rx_next = 4294967295;
initial_state.rx_deliv = 4294967295;
initial_state.rx_reord = 0;
pdcp_rx->set_tx_next(initial_state.tx_next);
pdcp_rx->set_rx_next(initial_state.rx_next);
pdcp_rx->set_rx_deliv(initial_state.rx_deliv);
pdcp_rx->set_rx_reord(initial_state.rx_reord);
// Setup PDCP PDUs (SN 4095 and 0)
std::vector<srslte::unique_byte_buffer_t> rx_pdus;
rx_pdus.reserve(2);
rx_pdus[0] = srslte::allocate_unique_buffer(*pool);
rx_pdus[1] = srslte::allocate_unique_buffer(*pool);
rx_pdus[0]->append_bytes(pdu1, sizeof(pdu1));
rx_pdus[1]->append_bytes(pdu7, sizeof(pdu7));
// set sdu exp
srslte::unique_byte_buffer_t sdu_exp = srslte::allocate_unique_buffer(*pool);
// Write PDUs into Rx PDCP
for(srslte::unique_byte_buffer_t &rx_pdu : rx_pdus){
pdcp_rx->write_pdu(std::move(rx_pdu));
}
// Test actual reception
TESTASSERT(gw_rx->rx_count == rx_pdus.size());
srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool);
gw_rx->get_last_pdu(sdu_act);
log->info_hex(sdu_act->msg, sdu_act->N_bytes, "SDU act");
TESTASSERT(compare_two_packets(sdu_act, sdu_exp) == 0);
return 0;
}
/*
* TX Test: PDCP Entity with SN LEN = 12 and 18.
* PDCP entity configured with EIA2 and EEA2
*/
int test_tx_all(srslte::byte_buffer_pool* pool, srslte::log* log)
{
/*
* TX Test 1: PDCP Entity with SN LEN = 12
* TX_NEXT = 0.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92}
*/
srslte::unique_byte_buffer_t pdu_exp_sn0_len12 = allocate_unique_buffer(*pool);
pdu_exp_sn0_len12->append_bytes(pdu1, sizeof(pdu1));
TESTASSERT(test_tx(1, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn0_len12), pool, log) == 0);
/*
* TX Test 2: PDCP Entity with SN LEN = 12
* TX_NEXT = 2048.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x88, 0x00}, Ciphered Text {0x8d, 0x2c}, MAC-I {0x47, 0x5e, 0xb1, 0x5b}
*/
srslte::unique_byte_buffer_t pdu_exp_sn2048_len12 = allocate_unique_buffer(*pool);
pdu_exp_sn2048_len12->append_bytes(pdu2, sizeof(pdu2));
TESTASSERT(test_tx(2049, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn2048_len12), pool, log) == 0);
/*
* TX Test 3: PDCP Entity with SN LEN = 12
* TX_NEXT = 4096.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80,0x00}, Ciphered Text {0x97, 0xbe}, MAC-I {0xa3, 0x32, 0xfa, 0x61}
*/
srslte::unique_byte_buffer_t pdu_exp_sn4096_len12 = allocate_unique_buffer(*pool);
pdu_exp_sn4096_len12->append_bytes(pdu3, sizeof(pdu3));
TESTASSERT(test_tx(4097, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn4096_len12), pool, log) == 0);
/*
* TX Test 4: PDCP Entity with SN LEN = 18
* TX_NEXT = 0.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80, 0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92}
*/
srslte::unique_byte_buffer_t pdu_exp_sn0_len18 = allocate_unique_buffer(*pool);
pdu_exp_sn0_len18->append_bytes(pdu4, sizeof(pdu4));
TESTASSERT(test_tx(1, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn0_len18), pool, log) == 0);
/*
* TX Test 5: PDCP Entity with SN LEN = 18
* TX_NEXT = 131072.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x82, 0x00, 0x00}, Ciphered Text {0x15, 0x01}, MAC-I {0xf4, 0xb0, 0xfc, 0xc5}
*/
srslte::unique_byte_buffer_t pdu_exp_sn131072_len18 = allocate_unique_buffer(*pool);
pdu_exp_sn131072_len18->append_bytes(pdu5, sizeof(pdu5));
TESTASSERT(test_tx(131073, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn131072_len18), pool, log) == 0);
/*
* TX Test 6: PDCP Entity with SN LEN = 18
* TX_NEXT = 262144.
* Input: {0x18, 0xE2}
* Output: PDCP Header {0x80, 0x00, 0x00}, Ciphered Text {0xc2, 0x47}, MAC-I {0xa8, 0xdd, 0xc0, 0x73}
*/
srslte::unique_byte_buffer_t pdu_exp_sn262144_len18 = allocate_unique_buffer(*pool);
pdu_exp_sn262144_len18->append_bytes(pdu6, sizeof(pdu6));
TESTASSERT(test_tx(262145, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn262144_len18), pool, log) == 0);
return 0;
}
/*
* RX Test: PDCP Entity with SN LEN = 12 and 18.
* PDCP entity configured with EIA2 and EEA2
*/
int test_rx_all(srslte::byte_buffer_pool* pool, srslte::log* log)
{
/*
* RX Test 1: PDCP Entity with SN LEN = 12
* Test in-sequence reception of 4097 packets.
* This tests correct handling of HFN in the case of SN wraparound
*/
TESTASSERT(test_rx_in_sequence(4097, srslte::PDCP_SN_LEN_12, pool, log) == 0);
/*
* RX Test 2: PDCP Entity with SN LEN = 12
* Test in-sequence reception of 4294967297 packets.
* This tests correct handling of COUNT in the case of [HFN|SN] wraparound
*/
// // TESTASSERT(test_rx_in_sequence(4294967297, srslte::PDCP_SN_LEN_12, pool, &log) == 0);
/*
* RX Test 3: PDCP Entity with SN LEN = 18
* Test In-sequence reception of 262145 packets.
* This tests correct handling of HFN in the case of SN wraparound
*/
TESTASSERT(test_rx_in_sequence(262145, srslte::PDCP_SN_LEN_18, pool, log) == 0);
/*
* RX Test 4: PDCP Entity with SN LEN = 12
* Test Reception of one out-of-order packet.
*/
//TESTASSERT(test_rx_out_of_order(srslte::PDCP_SN_LEN_12, pool, log) == 0);
TESTASSERT(test_rx_out_of_order(2, srslte::PDCP_SN_LEN_12, pool, log) == 0);
/*
* RX Test 5: PDCP Entity with SN LEN = 12
* Test timeout of t-Reordering when one packet is lost.
*/
TESTASSERT(test_rx_out_of_order_timeout(srslte::PDCP_SN_LEN_12, pool, log) == 0);
/*
* RX Test 5: PDCP Entity with SN LEN = 12
* Test timeout of t-Reordering when one packet is lost.
*/
//TESTASSERT(test_rx_out_of_order(4294967297, srslte::PDCP_SN_LEN_12, pool, log) == 0);
return 0;
}
// Setup all tests
int run_all_tests(srslte::byte_buffer_pool* pool)
{
// Setup log
srslte::log_filter log("PDCP NR Test");
log.set_level(srslte::LOG_LEVEL_DEBUG);
log.set_hex_limit(128);
//TESTASSERT(test_tx_all(pool, &log) == 0);
//TESTASSERT(test_rx_all(pool, &log) == 0);
return 0;
}
int main(int argc, char** argv)
{
run_all_tests(srslte::byte_buffer_pool::get_instance());
srslte::byte_buffer_pool::cleanup();
}