You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1235 lines
45 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <boost/program_options.hpp>
#include <boost/program_options/options_description.hpp>
#include <boost/program_options/parsers.hpp>
#include <iostream>
#include <mutex>
#include <srsenb/hdr/phy/phy.h>
#include <srslte/common/test_common.h>
#include <srslte/common/threads.h>
#include <srslte/common/tti_sync_cv.h>
#include <srslte/interfaces/enb_interfaces.h>
#include <srslte/phy/common/phy_common.h>
#include <srslte/phy/phch/pusch_cfg.h>
#include <srslte/phy/utils/random.h>
#include <srslte/srslte.h>
#define CALLBACK(NAME) \
private: \
bool received_##NAME = false; \
\
public: \
bool wait_##NAME(uint32_t timeout_ms, bool reset_flag = false) \
{ \
std::unique_lock<std::mutex> lock(mutex); \
std::chrono::system_clock::time_point expire_time = std::chrono::system_clock::now(); \
expire_time += std::chrono::milliseconds(timeout_ms); \
bool expired = false; \
if (reset_flag) { \
received_##NAME = false; \
} \
while (not received_##NAME and not expired) { \
expired = (cvar.wait_until(lock, expire_time) == std::cv_status::timeout); \
} \
if (expired) { \
log_h.warning("Expired " #NAME " waiting\n"); \
} \
return received_##NAME; \
} \
\
bool get_received_##NAME() { return received_##NAME; } \
\
private: \
void notify_##NAME() \
{ \
std::unique_lock<std::mutex> lock(mutex); \
cvar.notify_all(); \
log_h.debug(#NAME " received\n"); \
received_##NAME = true; \
}
class dummy_radio : public srslte::radio_interface_phy
{
private:
std::mutex mutex;
std::condition_variable cvar;
srslte::log_filter log_h;
std::vector<srslte_ringbuffer_t*> ringbuffers_tx;
std::vector<srslte_ringbuffer_t*> ringbuffers_rx;
srslte_timestamp_t ts_rx = {};
double rx_srate = 0.0;
bool running = true;
CALLBACK(tx);
CALLBACK(tx_end);
CALLBACK(rx_now);
CALLBACK(set_tx_freq);
CALLBACK(set_rx_freq);
CALLBACK(set_rx_gain_th);
CALLBACK(set_rx_gain);
CALLBACK(set_tx_gain);
CALLBACK(set_tx_srate);
CALLBACK(set_rx_srate);
CALLBACK(get_rx_gain);
CALLBACK(get_freq_offset);
CALLBACK(get_tx_freq);
CALLBACK(get_rx_freq);
CALLBACK(get_max_tx_power);
CALLBACK(get_tx_gain_offset);
CALLBACK(get_rx_gain_offset);
CALLBACK(is_continuous_tx);
CALLBACK(get_is_start_of_burst);
CALLBACK(is_init);
CALLBACK(reset);
CALLBACK(get_info);
public:
explicit dummy_radio(uint32_t nof_channels, uint32_t nof_prb, const std::string& log_level) : log_h("RADIO")
{
log_h.set_level(log_level);
// Allocate receive ring buffer
for (uint32_t i = 0; i < nof_channels; i++) {
auto* rb = (srslte_ringbuffer_t*)srslte_vec_malloc(sizeof(srslte_ringbuffer_t));
if (not rb) {
ERROR("Allocating ring buffer\n");
}
if (srslte_ringbuffer_init(rb, SRSLTE_SF_LEN_PRB(nof_prb) * SRSLTE_NOF_SF_X_FRAME * (uint32_t)sizeof(cf_t))) {
ERROR("Initiating ring buffer\n");
}
ringbuffers_tx.push_back(rb);
}
// Allocate transmit ring buffer
for (uint32_t i = 0; i < nof_channels; i++) {
auto* rb = (srslte_ringbuffer_t*)srslte_vec_malloc(sizeof(srslte_ringbuffer_t));
if (not rb) {
ERROR("Allocating ring buffer\n");
}
if (srslte_ringbuffer_init(rb, SRSLTE_SF_LEN_PRB(nof_prb) * SRSLTE_NOF_SF_X_FRAME * (uint32_t)sizeof(cf_t))) {
ERROR("Initiating ring buffer\n");
}
ringbuffers_rx.push_back(rb);
}
}
~dummy_radio()
{
for (auto& rb : ringbuffers_tx) {
if (rb) {
srslte_ringbuffer_free(rb);
free(rb);
}
}
for (auto& rb : ringbuffers_rx) {
if (rb) {
srslte_ringbuffer_free(rb);
free(rb);
}
}
}
void stop() { running = false; }
int read_tx(std::vector<cf_t*>& buffers, uint32_t nof_samples)
{
int err = SRSLTE_SUCCESS;
uint32_t nbytes = static_cast<uint32_t>(sizeof(cf_t)) * nof_samples;
log_h.debug("read_tx %d\n", nof_samples);
for (uint32_t i = 0; i < ringbuffers_tx.size() and i < buffers.size(); i++) {
do {
err = srslte_ringbuffer_read_timed(ringbuffers_tx[i], buffers[i], nbytes, 1000);
} while (err < SRSLTE_SUCCESS and running);
}
return err;
}
void write_rx(std::vector<cf_t*>& buffers, uint32_t nof_samples)
{
uint32_t nbytes = static_cast<uint32_t>(sizeof(cf_t)) * nof_samples;
log_h.debug("write_rx %d\n", nof_samples);
for (uint32_t i = 0; i < ringbuffers_rx.size() and i < buffers.size(); i++) {
srslte_ringbuffer_write(ringbuffers_rx[i], buffers[i], nbytes);
}
}
bool tx(srslte::rf_buffer_interface& buffer, const uint32_t& nof_samples, const srslte_timestamp_t& tx_time) override
{
int err = SRSLTE_SUCCESS;
// Get number of bytes to write
uint32_t nbytes = static_cast<uint32_t>(sizeof(cf_t)) * nof_samples;
log_h.debug("tx %d\n", nof_samples);
// Write ring buffer
for (uint32_t i = 0; i < ringbuffers_tx.size() and err >= SRSLTE_SUCCESS; i++) {
err = srslte_ringbuffer_write(ringbuffers_tx[i], buffer.get(i), nbytes);
}
// Notify call
notify_tx();
// Return True if err >= SRSLTE_SUCCESS
return err >= SRSLTE_SUCCESS;
}
void tx_end() override {}
bool rx_now(srslte::rf_buffer_interface& buffer, const uint32_t& nof_samples, srslte_timestamp_t* rxd_time) override
{
int err = SRSLTE_SUCCESS;
log_h.info("rx_now %d\n", nof_samples);
// Get number of bytes to read
uint32_t nbytes = static_cast<uint32_t>(sizeof(cf_t)) * nof_samples;
// Write ring buffer
for (uint32_t i = 0; i < ringbuffers_rx.size() and err >= SRSLTE_SUCCESS; i++) {
do {
err = srslte_ringbuffer_read_timed(ringbuffers_rx[i], buffer.get(i), nbytes, 1000);
} while (err < SRSLTE_SUCCESS and running);
}
// Copy new timestamp
if (rxd_time) {
*rxd_time = ts_rx;
}
// Copy new timestamp
if (std::isnormal(rx_srate)) {
srslte_timestamp_add(&ts_rx, 0, static_cast<double>(nof_samples) / rx_srate);
}
// Notify Rx
notify_rx_now();
// Return True if err >= SRSLTE_SUCCESS
return err >= SRSLTE_SUCCESS;
}
void set_tx_freq(const uint32_t& channel_idx, const double& freq) override {}
void set_rx_freq(const uint32_t& channel_idx, const double& freq) override {}
void set_rx_gain_th(const float& gain) override {}
void set_rx_gain(const float& gain) override {}
void set_tx_srate(const double& srate) override {}
void set_rx_srate(const double& srate) override { rx_srate = srate; }
void set_tx_gain(const float& gain) override {}
float get_rx_gain() override { return 0; }
double get_freq_offset() override { return 0; }
bool is_continuous_tx() override { return false; }
bool get_is_start_of_burst() override { return false; }
bool is_init() override { return false; }
void reset() override {}
srslte_rf_info_t* get_info() override { return nullptr; }
};
typedef std::unique_ptr<dummy_radio> unique_dummy_radio_t;
class dummy_stack : public srsenb::stack_interface_phy_lte
{
private:
static constexpr float prob_dl_grant = 0.50f;
static constexpr float prob_ul_grant = 0.10f;
static constexpr uint32_t cfi = 2;
srsenb::phy_cell_cfg_list_t phy_cell_cfg;
std::mutex mutex;
std::condition_variable cvar;
srslte::log_filter log_h;
srslte::tti_sync_cv tti_sync;
srslte_softbuffer_tx_t softbuffer_tx = {};
srslte_softbuffer_rx_t softbuffer_rx[SRSLTE_MAX_CARRIERS][SRSLTE_FDD_NOF_HARQ] = {};
uint8_t* data = nullptr;
uint16_t ue_rnti = 0;
srslte_random_t random_gen = nullptr;
CALLBACK(sr_detected);
CALLBACK(rach_detected);
CALLBACK(ri_info);
CALLBACK(pmi_info);
CALLBACK(cqi_info);
CALLBACK(snr_info);
CALLBACK(ta_info);
CALLBACK(ack_info);
CALLBACK(crc_info);
CALLBACK(get_dl_sched);
CALLBACK(get_mch_sched);
CALLBACK(get_ul_sched);
CALLBACK(set_sched_dl_tti_mask);
CALLBACK(rl_failure);
CALLBACK(rl_ok);
CALLBACK(tti_clock);
typedef struct {
uint32_t tti;
uint32_t cc_idx;
uint32_t tb_idx;
uint32_t ack;
} tti_dl_info_t;
typedef struct {
uint32_t tti;
uint32_t cc_idx;
bool crc;
} tti_ul_info_t;
typedef struct {
uint32_t tti;
} tti_sr_info_t;
typedef struct {
uint32_t tti;
uint32_t cc_idx;
uint32_t cqi;
} tti_cqi_info_t;
std::queue<tti_dl_info_t> tti_dl_info_sched_queue;
std::queue<tti_dl_info_t> tti_dl_info_ack_queue;
std::queue<tti_ul_info_t> tti_ul_info_sched_queue;
std::queue<tti_ul_info_t> tti_ul_info_ack_queue;
std::queue<tti_sr_info_t> tti_sr_info_queue;
std::queue<tti_cqi_info_t> tti_cqi_info_queue;
std::vector<uint32_t> active_cell_list;
uint32_t nof_locations[SRSLTE_NOF_SF_X_FRAME] = {};
srslte_dci_location_t dci_locations[SRSLTE_NOF_SF_X_FRAME][MAX_CANDIDATES_UE] = {};
uint32_t ul_riv = 0;
public:
explicit dummy_stack(srsenb::phy_cfg_t& phy_cfg_,
const std::string& log_level,
uint16_t rnti_,
std::vector<uint32_t>& active_cell_list_) :
log_h("STACK"),
ue_rnti(rnti_),
random_gen(srslte_random_init(rnti_)),
phy_cell_cfg(phy_cfg_.phy_cell_cfg),
active_cell_list(active_cell_list_)
{
log_h.set_level(log_level);
srslte_softbuffer_tx_init(&softbuffer_tx, SRSLTE_MAX_PRB);
for (uint32_t i = 0; i < active_cell_list.size(); i++) {
for (auto& sb : softbuffer_rx[i]) {
srslte_softbuffer_rx_init(&sb, SRSLTE_MAX_PRB);
}
}
srslte_pdcch_t pdcch = {};
srslte_regs_t regs = {};
srslte_regs_init(&regs, phy_cell_cfg[0].cell);
srslte_pdcch_init_enb(&pdcch, phy_cell_cfg[0].cell.nof_prb);
srslte_pdcch_set_cell(&pdcch, &regs, phy_cell_cfg[0].cell);
for (uint32_t i = 0; i < SRSLTE_NOF_SF_X_FRAME; i++) {
srslte_dl_sf_cfg_t sf_cfg_dl;
ZERO_OBJECT(sf_cfg_dl);
sf_cfg_dl.tti = i;
sf_cfg_dl.cfi = cfi;
sf_cfg_dl.sf_type = SRSLTE_SF_NORM;
uint32_t _nof_locations = {};
srslte_dci_location_t _dci_locations[MAX_CANDIDATES_UE] = {};
_nof_locations = srslte_pdcch_ue_locations(&pdcch, &sf_cfg_dl, _dci_locations, MAX_CANDIDATES_UE, ue_rnti);
// Take L == 0 aggregation levels
for (uint32_t j = 0; j < _nof_locations && nof_locations[i] < MAX_CANDIDATES_UE; j++) {
if (_dci_locations[j].L == 0) {
dci_locations[i][nof_locations[i]] = _dci_locations[j];
nof_locations[i]++;
}
}
}
srslte_pdcch_free(&pdcch);
srslte_regs_free(&regs);
// Find a valid UL DCI RIV
uint32_t L_prb = phy_cell_cfg[0].cell.nof_prb - 2;
do {
if (srslte_dft_precoding_valid_prb(L_prb)) {
ul_riv = srslte_ra_type2_to_riv(L_prb, 1, phy_cell_cfg[0].cell.nof_prb);
} else {
L_prb--;
}
} while (ul_riv == 0);
data = srslte_vec_u8_malloc(150000);
memset(data, 0, 150000);
}
~dummy_stack()
{
srslte_softbuffer_tx_free(&softbuffer_tx);
for (auto& v : softbuffer_rx) {
for (auto& sb : v) {
srslte_softbuffer_rx_free(&sb);
}
}
if (data) {
free(data);
}
srslte_random_free(random_gen);
}
int sr_detected(uint32_t tti, uint16_t rnti) override
{
tti_sr_info_t tti_sr_info = {};
tti_sr_info.tti = tti;
tti_sr_info_queue.push(tti_sr_info);
notify_sr_detected();
log_h.info("Received SR tti=%d; rnti=x%x\n", tti, rnti);
return SRSLTE_SUCCESS;
}
void rach_detected(uint32_t tti, uint32_t primary_cc_idx, uint32_t preamble_idx, uint32_t time_adv) override
{
notify_rach_detected();
}
int ri_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t ri_value) override
{
notify_ri_info();
return 0;
}
int pmi_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t pmi_value) override
{
notify_pmi_info();
return 0;
}
int cqi_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t cqi_value) override
{
tti_cqi_info_t tti_cqi_info = {};
tti_cqi_info.tti = tti;
tti_cqi_info.cc_idx = cc_idx;
tti_cqi_info.cqi = cqi_value;
tti_cqi_info_queue.push(tti_cqi_info);
notify_cqi_info();
log_h.info("Received CQI tti=%d; rnti=x%x; cc_idx=%d; cqi=%d;\n", tti, rnti, cc_idx, cqi_value);
return SRSLTE_SUCCESS;
}
int snr_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, float snr_db) override
{
notify_snr_info();
return 0;
}
int ta_info(uint32_t tti, uint16_t rnti, float ta_us) override
{
log_h.info("Received TA INFO tti=%d; rnti=x%x; ta=%.1f us\n", tti, rnti, ta_us);
notify_ta_info();
return 0;
}
int ack_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t tb_idx, bool ack) override
{
// Push grant info in queue
tti_dl_info_t tti_dl_info = {};
tti_dl_info.tti = tti;
tti_dl_info.cc_idx = cc_idx;
tti_dl_info.tb_idx = 0;
tti_dl_info.ack = ack;
tti_dl_info_ack_queue.push(tti_dl_info);
log_h.info("Received DL ACK tti=%d; rnti=x%x; cc=%d; tb=%d; ack=%d;\n", tti, rnti, cc_idx, tb_idx, ack);
notify_ack_info();
return 0;
}
int crc_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t nof_bytes, bool crc_res) override
{
// Push grant info in queue
tti_ul_info_t tti_ul_info = {};
tti_ul_info.tti = tti;
tti_ul_info.cc_idx = cc_idx;
tti_ul_info.crc = crc_res;
tti_ul_info_ack_queue.push(tti_ul_info);
log_h.info("Received UL ACK tti=%d; rnti=x%x; cc=%d; ack=%d;\n", tti, rnti, cc_idx, crc_res);
notify_crc_info();
return 0;
}
int get_dl_sched(uint32_t tti, dl_sched_list_t& dl_sched_res) override
{
// Notify test engine
notify_get_dl_sched();
// Wait for UE
tti_sync.wait();
/// Make sure it writes the first cell always
dl_sched_res[0].cfi = cfi;
// Iterate for each carrier
for (uint32_t& cc_idx : active_cell_list) {
auto& dl_sched = dl_sched_res[cc_idx];
// Required
dl_sched.cfi = cfi;
// Random decision on whether transmit or not
bool sched = srslte_random_bool(random_gen, prob_dl_grant);
// RNTI needs to be valid
sched &= (ue_rnti != 0);
// Number of locations needs to be more than 2
sched &= (nof_locations[tti % SRSLTE_NOF_SF_X_FRAME] > 1);
// Schedule grant
if (sched) {
uint32_t location_idx = tti % nof_locations[tti % SRSLTE_NOF_SF_X_FRAME];
srslte_dci_location_t location = dci_locations[tti % SRSLTE_NOF_SF_X_FRAME][location_idx];
dl_sched.nof_grants = 1;
dl_sched.pdsch[0].softbuffer_tx[0] = &softbuffer_tx;
dl_sched.pdsch[0].softbuffer_tx[1] = &softbuffer_tx;
dl_sched.pdsch[0].dci.location = location;
dl_sched.pdsch[0].dci.type0_alloc.rbg_bitmask = 0xffffffff;
dl_sched.pdsch[0].dci.rnti = ue_rnti;
dl_sched.pdsch[0].dci.alloc_type = SRSLTE_RA_ALLOC_TYPE0;
dl_sched.pdsch[0].dci.tb[0].cw_idx = 0;
dl_sched.pdsch[0].dci.tb[0].mcs_idx = 27;
dl_sched.pdsch[0].dci.tb[0].rv = 0;
dl_sched.pdsch[0].dci.tb[0].ndi = false;
dl_sched.pdsch[0].dci.tb[1].cw_idx = 1;
dl_sched.pdsch[0].dci.tb[1].mcs_idx = 0;
dl_sched.pdsch[0].dci.tb[1].rv = 1;
dl_sched.pdsch[0].dci.tb[1].ndi = false;
dl_sched.pdsch[0].data[0] = data;
dl_sched.pdsch[0].data[1] = data;
dl_sched.pdsch[0].dci.format = SRSLTE_DCI_FORMAT1;
dl_sched.pdsch[0].dci.tpc_pucch = (location.ncce + 1) % SRSLTE_PUCCH_SIZE_AN_CS;
// Push grant info in queue
tti_dl_info_t tti_dl_info = {};
tti_dl_info.tti = tti;
tti_dl_info.cc_idx = cc_idx;
tti_dl_info.tb_idx = 0;
tti_dl_info.ack = true;
// Push to queue
tti_dl_info_sched_queue.push(tti_dl_info);
} else {
dl_sched.nof_grants = 0;
}
}
return 0;
}
int get_mch_sched(uint32_t tti, bool is_mcch, dl_sched_list_t& dl_sched_res) override
{
notify_get_mch_sched();
return 0;
}
int get_ul_sched(uint32_t tti, ul_sched_list_t& ul_sched_res) override
{
// Notify test engine
notify_get_ul_sched();
// Iterate for each carrier following the eNb/Cell order
for (uint32_t cc_idx = 0; cc_idx < ul_sched_res.size(); cc_idx++) {
auto scell_idx = active_cell_list.size();
auto& ul_sched = ul_sched_res[cc_idx];
// Checks if the eNb cell/carrier is enabled
for (uint32_t i = 0; i < active_cell_list.size() and scell_idx == active_cell_list.size(); i++) {
if (cc_idx == active_cell_list[i]) {
scell_idx = i;
}
}
// Random decision on whether transmit or not
bool sched = srslte_random_bool(random_gen, prob_ul_grant);
sched &= (scell_idx < active_cell_list.size());
// RNTI needs to be valid
sched &= (ue_rnti != 0);
// Number of locations needs to be more than 2
sched &= (nof_locations[tti % SRSLTE_NOF_SF_X_FRAME] > 1);
// Avoid giving grants when SR is expected
sched &= (tti % 20 != 0);
// Schedule grant
if (sched) {
uint32_t tti_pdcch = TTI_SUB(tti, TX_DELAY);
uint32_t location_idx = (tti_pdcch + 1) % nof_locations[tti_pdcch % SRSLTE_NOF_SF_X_FRAME];
srslte_dci_location_t location = dci_locations[tti_pdcch % SRSLTE_NOF_SF_X_FRAME][location_idx];
ul_sched.nof_grants = 1;
ul_sched.pusch[0] = {};
ul_sched.pusch[0].dci.rnti = ue_rnti;
ul_sched.pusch[0].dci.format = SRSLTE_DCI_FORMAT0;
ul_sched.pusch[0].dci.location = location;
ul_sched.pusch[0].dci.type2_alloc.riv = ul_riv;
ul_sched.pusch[0].dci.type2_alloc.n_prb1a = srslte_ra_type2_t::SRSLTE_RA_TYPE2_NPRB1A_2;
ul_sched.pusch[0].dci.type2_alloc.n_gap = srslte_ra_type2_t::SRSLTE_RA_TYPE2_NG1;
ul_sched.pusch[0].dci.type2_alloc.mode = srslte_ra_type2_t::SRSLTE_RA_TYPE2_LOC;
ul_sched.pusch[0].dci.freq_hop_fl = srslte_dci_ul_t::SRSLTE_RA_PUSCH_HOP_DISABLED;
ul_sched.pusch[0].dci.tb.mcs_idx = 24;
ul_sched.pusch[0].dci.tb.rv = 0;
ul_sched.pusch[0].dci.tb.ndi = false;
ul_sched.pusch[0].dci.tb.cw_idx = 0;
ul_sched.pusch[0].dci.n_dmrs = 0;
ul_sched.pusch[0].dci.cqi_request = false;
ul_sched.pusch[0].data = data;
ul_sched.pusch[0].needs_pdcch = true;
ul_sched.pusch[0].softbuffer_rx = &softbuffer_rx[scell_idx][tti % SRSLTE_FDD_NOF_HARQ];
// Reset Rx softbuffer
srslte_softbuffer_rx_reset(ul_sched.pusch[0].softbuffer_rx);
// Push grant info in queue
tti_ul_info_t tti_ul_info = {};
tti_ul_info.tti = tti;
tti_ul_info.cc_idx = cc_idx;
tti_ul_info.crc = true;
// Push to queue
tti_ul_info_sched_queue.push(tti_ul_info);
} else {
ul_sched.nof_grants = 0;
}
}
return SRSLTE_SUCCESS;
}
void set_sched_dl_tti_mask(uint8_t* tti_mask, uint32_t nof_sfs) override { notify_set_sched_dl_tti_mask(); }
void rl_failure(uint16_t rnti) override { notify_rl_failure(); }
void rl_ok(uint16_t rnti) override { notify_rl_ok(); }
void tti_clock() override
{
notify_tti_clock();
tti_sync.increase();
}
int run_tti()
{
// Check DL ACKs match with grants
while (not tti_dl_info_ack_queue.empty()) {
// Get both Info
tti_dl_info_t& tti_dl_sched = tti_dl_info_sched_queue.front();
tti_dl_info_t& tti_dl_ack = tti_dl_info_ack_queue.front();
// Calculate ACK TTI
tti_dl_sched.tti = TTI_ADD(tti_dl_sched.tti, TX_DELAY);
// Assert that ACKs have been received
TESTASSERT(tti_dl_sched.tti == tti_dl_ack.tti);
TESTASSERT(tti_dl_sched.cc_idx == tti_dl_ack.cc_idx);
TESTASSERT(tti_dl_sched.tb_idx == tti_dl_ack.tb_idx);
TESTASSERT(tti_dl_sched.ack == tti_dl_ack.ack);
tti_dl_info_sched_queue.pop();
tti_dl_info_ack_queue.pop();
}
// Check UL ACKs match with grants
while (not tti_ul_info_ack_queue.empty()) {
// Get both Info
tti_ul_info_t& tti_ul_sched = tti_ul_info_sched_queue.front();
tti_ul_info_t& tti_ul_ack = tti_ul_info_ack_queue.front();
// Assert that ACKs have been received
TESTASSERT(tti_ul_sched.tti == tti_ul_ack.tti);
TESTASSERT(tti_ul_sched.cc_idx == tti_ul_ack.cc_idx);
TESTASSERT(tti_ul_sched.crc == tti_ul_ack.crc);
tti_ul_info_sched_queue.pop();
tti_ul_info_ack_queue.pop();
}
// Check SR match with TTI
while (tti_sr_info_queue.size() > 1) {
tti_sr_info_t tti_sr_info1 = tti_sr_info_queue.front();
// POP first from queue
tti_sr_info_queue.pop();
// Get second, do not pop
tti_sr_info_t& tti_sr_info2 = tti_sr_info_queue.front();
uint32_t elapsed_tti = TTI_SUB(tti_sr_info2.tti, tti_sr_info1.tti);
// Log SR info
log_h.info("SR: tti1=%d; tti2=%d; elapsed %d;\n", tti_sr_info1.tti, tti_sr_info2.tti, elapsed_tti);
// Check first TTI
TESTASSERT(tti_sr_info1.tti % 20 == 0);
// Make sure the TTI difference is 20
TESTASSERT(elapsed_tti == 20);
}
return SRSLTE_SUCCESS;
}
};
typedef std::unique_ptr<dummy_stack> unique_dummy_stack_t;
class dummy_ue
{
private:
std::vector<srslte_ue_dl_t*> ue_dl_v = {};
std::vector<srslte_ue_ul_t*> ue_ul_v = {};
std::vector<cf_t*> buffers = {};
dummy_radio* radio = nullptr;
uint32_t sf_len = 0;
uint16_t rnti = 0;
srslte_dl_sf_cfg_t sf_dl_cfg = {};
srslte_ul_sf_cfg_t sf_ul_cfg = {};
srslte_softbuffer_tx_t softbuffer_tx = {};
uint8_t* tx_data = nullptr;
srsenb::phy_interface_rrc_lte::phy_rrc_dedicated_list_t phy_rrc_cfg = {};
srslte::log_filter log_h;
public:
dummy_ue(dummy_radio* _radio,
const srsenb::phy_cell_cfg_list_t& cell_list,
std::string log_level,
uint16_t rnti_,
const srsenb::phy_interface_rrc_lte::phy_rrc_dedicated_list_t& phy_rrc_cfg_) :
radio(_radio), log_h("UE PHY", nullptr, true), phy_rrc_cfg(phy_rrc_cfg_)
{
// Calculate subframe length
sf_len = static_cast<uint32_t>(SRSLTE_SF_LEN_PRB(cell_list[0].cell.nof_prb));
rnti = rnti_;
log_h.set_level(std::move(log_level));
// Initialise one buffer per eNb
for (uint32_t i = 0; i < cell_list.size(); i++) {
// Allocate buffers
cf_t* buffer = srslte_vec_cf_malloc(sf_len);
if (not buffer) {
ERROR("Allocating UE DL buffer\n");
}
buffers.push_back(buffer);
// Set buffer to zero
srslte_vec_cf_zero(buffer, sf_len);
}
for (auto& q : phy_rrc_cfg) {
uint32_t cc_idx = q.enb_cc_idx;
// Allocate UE DL
auto* ue_dl = (srslte_ue_dl_t*)srslte_vec_malloc(sizeof(srslte_ue_dl_t));
if (not ue_dl) {
ERROR("Allocatin UE DL\n");
}
ue_dl_v.push_back(ue_dl);
// Initialise UE DL
if (srslte_ue_dl_init(
ue_dl, &buffers[cc_idx], cell_list[cc_idx].cell.nof_prb, cell_list[cc_idx].cell.nof_ports)) {
ERROR("Initiating UE DL\n");
}
// Set Cell
if (srslte_ue_dl_set_cell(ue_dl, cell_list[cc_idx].cell)) {
ERROR("Setting UE DL cell\n");
}
// Set RNTI
srslte_ue_dl_set_rnti(ue_dl, rnti);
// Allocate UE UL
auto* ue_ul = (srslte_ue_ul_t*)srslte_vec_malloc(sizeof(srslte_ue_ul_t));
if (not ue_ul) {
ERROR("Allocatin UE UL\n");
}
ue_ul_v.push_back(ue_ul);
// Initialise UE UL
if (srslte_ue_ul_init(ue_ul, buffers[cc_idx], cell_list[cc_idx].cell.nof_prb)) {
ERROR("Setting UE UL cell\n");
}
// Set cell
if (srslte_ue_ul_set_cell(ue_ul, cell_list[cc_idx].cell)) {
ERROR("Setting UE DL cell\n");
}
// Set RNTI
srslte_ue_ul_set_rnti(ue_ul, rnti);
}
// Initialise softbuffer
if (srslte_softbuffer_tx_init(&softbuffer_tx, cell_list[0].cell.nof_prb)) {
ERROR("Initialising Tx softbuffer\n");
}
// Initialise dummy tx data
tx_data = srslte_vec_u8_malloc(SRSENB_MAX_BUFFER_SIZE_BYTES);
if (not tx_data) {
ERROR("Allocating Tx data\n");
}
for (uint32_t i = 0; i < SRSENB_MAX_BUFFER_SIZE_BYTES; i++) {
tx_data[i] = static_cast<uint8_t>(((i + 257) * (i + 373)) % 255); ///< Creative random data generator
}
// Push HARQ delay to radio
for (uint32_t i = 0; i < TX_DELAY; i++) {
radio->write_rx(buffers, sf_len);
sf_ul_cfg.tti = TTI_ADD(sf_ul_cfg.tti, 1); // Advance UL TTI too
}
for (uint32_t i = 0; i < FDD_HARQ_DELAY_MS; i++) {
radio->write_rx(buffers, sf_len);
}
}
~dummy_ue()
{
for (auto& ue_dl : ue_dl_v) {
if (ue_dl) {
srslte_ue_dl_free(ue_dl);
free(ue_dl);
}
}
for (auto& ue_ul : ue_ul_v) {
if (ue_ul) {
srslte_ue_ul_free(ue_ul);
free(ue_ul);
}
}
for (auto& b : buffers) {
if (b) {
free(b);
}
}
if (tx_data) {
free(tx_data);
}
srslte_softbuffer_tx_free(&softbuffer_tx);
}
int work_dl(srslte_pdsch_ack_t& pdsch_ack, srslte_uci_data_t& uci_data)
{
// Read DL
TESTASSERT(radio->read_tx(buffers, sf_len) >= SRSLTE_SUCCESS);
// Get grants DL/UL, we do not care about Decoding PDSCH
for (uint32_t i = 0; i < phy_rrc_cfg.size(); i++) {
uint32_t cc_idx = phy_rrc_cfg[i].enb_cc_idx;
srslte::phy_cfg_t& dedicated = phy_rrc_cfg[i].phy_cfg;
/// Set UCI configuration from PCell only
if (i == 0) {
uci_data.cfg = dedicated.ul_cfg.pucch.uci_cfg;
pdsch_ack.ack_nack_feedback_mode = dedicated.ul_cfg.pucch.ack_nack_feedback_mode;
pdsch_ack.nof_cc = static_cast<uint32_t>(phy_rrc_cfg.size());
pdsch_ack.transmission_mode = dedicated.dl_cfg.tm;
pdsch_ack.simul_cqi_ack = dedicated.ul_cfg.pucch.simul_cqi_ack;
}
srslte_dci_dl_t dci_dl[SRSLTE_MAX_DCI_MSG] = {};
srslte_ue_dl_cfg_t ue_dl_cfg = {};
ue_dl_cfg.cfg = dedicated.dl_cfg;
ue_dl_cfg.cfg.cqi_report.periodic_mode = SRSLTE_CQI_MODE_12;
ue_dl_cfg.cfg.pdsch.rnti = rnti;
srslte_ue_dl_decode_fft_estimate(ue_dl_v[i], &sf_dl_cfg, &ue_dl_cfg);
// Get DL Grants
int nof_dl_grants = srslte_ue_dl_find_dl_dci(ue_dl_v[i], &sf_dl_cfg, &ue_dl_cfg, rnti, dci_dl);
TESTASSERT(nof_dl_grants >= SRSLTE_SUCCESS);
// Generate ACKs
if (nof_dl_grants) {
char str[256] = {};
srslte_dci_dl_info(dci_dl, str, sizeof(str));
log_h.info("[DL DCI] %s\n", str);
if (srslte_ue_dl_dci_to_pdsch_grant(ue_dl_v[i], &sf_dl_cfg, &ue_dl_cfg, dci_dl, &ue_dl_cfg.cfg.pdsch.grant)) {
log_h.error("Converting DCI message to DL dci\n");
return SRSLTE_ERROR;
}
srslte_pdsch_tx_info(&ue_dl_cfg.cfg.pdsch, str, 512);
log_h.info("[DL PDSCH %d] cc=%d, %s\n", i, cc_idx, str);
pdsch_ack.cc[i].M = 1;
pdsch_ack.cc[i].m[0].present = true;
pdsch_ack.cc[i].m[0].resource.v_dai_dl = dci_dl->dai;
pdsch_ack.cc[i].m[0].resource.n_cce = dci_dl->location.ncce;
pdsch_ack.cc[i].m[0].resource.grant_cc_idx = i;
pdsch_ack.cc[i].m[0].resource.tpc_for_pucch = dci_dl->tpc_pucch;
pdsch_ack.cc[i].m[0].value[0] = 1;
pdsch_ack.cc[i].m[0].value[1] = 1;
} else {
pdsch_ack.cc[i].M = 1;
pdsch_ack.cc[i].m[0].present = false;
}
// Generate CQI periodic if required
srslte_ue_dl_gen_cqi_periodic(ue_dl_v[i], &ue_dl_cfg, 0x0f, sf_ul_cfg.tti, &uci_data);
}
return SRSLTE_SUCCESS;
}
int work_ul(srslte_pdsch_ack_t& pdsch_ack, srslte_uci_data_t& uci_data)
{
// Zero all IQ UL buffers
for (auto& buffer : buffers) {
srslte_vec_cf_zero(buffer, SRSLTE_SF_LEN_PRB(ue_ul_v[0]->cell.nof_prb));
}
for (uint32_t i = 0; i < phy_rrc_cfg.size(); i++) {
srslte_dci_ul_t dci_ul[SRSLTE_MAX_DCI_MSG] = {};
srslte::phy_cfg_t& dedicated = phy_rrc_cfg[i].phy_cfg;
srslte_ue_ul_cfg_t ue_ul_cfg = {};
ue_ul_cfg.ul_cfg = dedicated.ul_cfg;
ue_ul_cfg.ul_cfg.pusch.softbuffers.tx = &softbuffer_tx;
ue_ul_cfg.ul_cfg.pusch.rnti = rnti;
ue_ul_cfg.ul_cfg.pucch.rnti = rnti;
ue_ul_cfg.cc_idx = i; // SCell index
srslte_ue_dl_cfg_t ue_dl_cfg = {};
ue_dl_cfg.cfg = dedicated.dl_cfg;
ue_dl_cfg.cfg.cqi_report.periodic_mode = SRSLTE_CQI_MODE_12;
ue_dl_cfg.cfg.pdsch.rnti = rnti;
// Get UL grants
int nof_ul_grants = srslte_ue_dl_find_ul_dci(ue_dl_v[i], &sf_dl_cfg, &ue_dl_cfg, rnti, dci_ul);
TESTASSERT(nof_ul_grants >= SRSLTE_SUCCESS);
srslte_pusch_data_t pusch_data = {};
pusch_data.ptr = tx_data;
if (nof_ul_grants > SRSLTE_SUCCESS) {
TESTASSERT(srslte_ue_ul_dci_to_pusch_grant(
ue_ul_v[i], &sf_ul_cfg, &ue_ul_cfg, dci_ul, &ue_ul_cfg.ul_cfg.pusch.grant) >= SRSLTE_SUCCESS);
srslte_softbuffer_tx_reset(&softbuffer_tx);
ue_ul_cfg.ul_cfg.pusch.softbuffers.tx = &softbuffer_tx;
ue_ul_cfg.grant_available = true;
}
// Generate
if (i == 0) {
// Generate scheduling request
srslte_ue_ul_gen_sr(&ue_ul_cfg, &sf_ul_cfg, &uci_data, (bool)(sf_ul_cfg.tti % 20 == 0));
// Generate Acknowledgements
srslte_ue_dl_gen_ack(&ue_dl_v[i]->cell, &sf_dl_cfg, &pdsch_ack, &uci_data);
}
// Set UCI only for PCel
if (i == 0) {
pusch_data.uci = uci_data.value;
ue_ul_cfg.ul_cfg.pusch.uci_cfg = uci_data.cfg;
ue_ul_cfg.ul_cfg.pucch.uci_cfg = uci_data.cfg;
}
// Work UL
TESTASSERT(srslte_ue_ul_encode(ue_ul_v[i], &sf_ul_cfg, &ue_ul_cfg, &pusch_data) >= SRSLTE_SUCCESS);
char str[256] = {};
srslte_ue_ul_info(&ue_ul_cfg, &sf_ul_cfg, &pusch_data.uci, str, sizeof(str));
if (str[0]) {
log_h.info("[UL INFO %d] %s\n", i, str);
}
}
// Write eNb Rx
radio->write_rx(buffers, sf_len);
return SRSLTE_SUCCESS;
}
int run_tti()
{
srslte_uci_data_t uci_data = {};
srslte_pdsch_ack_t pdsch_ack = {};
// Set logging TTI
log_h.step(sf_dl_cfg.tti);
// Work DL
TESTASSERT(work_dl(pdsch_ack, uci_data) == SRSLTE_SUCCESS);
// Work UL
TESTASSERT(work_ul(pdsch_ack, uci_data) == SRSLTE_SUCCESS);
// Increment TTI
sf_dl_cfg.tti = TTI_ADD(sf_dl_cfg.tti, 1);
sf_ul_cfg.tti = TTI_ADD(sf_ul_cfg.tti, 1);
return SRSLTE_SUCCESS;
}
};
typedef std::unique_ptr<dummy_ue> unique_dummy_ue_phy_t;
typedef std::unique_ptr<srsenb::phy> unique_srsenb_phy_t;
class phy_test_bench
{
public:
struct args_t {
uint16_t rnti = 0x1234;
uint32_t duration = 10240;
uint32_t nof_enb_cells = 1;
srslte_cell_t cell = {};
std::string ue_cell_list_str = "0"; ///< First indicates PCell
std::vector<uint32_t> ue_cell_list = {0};
std::string ack_mode = "normal";
std::string log_level = "none";
args_t()
{
cell.nof_prb = 6;
cell.nof_ports = 1;
}
};
private:
// Test constants
static const uint32_t delta_pucch = 2;
static const uint32_t N_pucch_1 = 2;
// Private classes
unique_dummy_radio_t radio;
unique_dummy_stack_t stack;
unique_srsenb_phy_t enb_phy;
unique_dummy_ue_phy_t ue_phy;
srslte::log_filter log_h;
srslte::logger_stdout logger_stdout;
args_t args = {}; ///< Test arguments
srsenb::phy_args_t phy_args; ///< PHY arguments
srsenb::phy_cfg_t phy_cfg; ///< eNb Cell/Carrier configuration
srsenb::phy_interface_rrc_lte::phy_rrc_dedicated_list_t phy_rrc_cfg; ///< UE PHY configuration
public:
explicit phy_test_bench(args_t& args_) : log_h("TEST BENCH")
{
// Copy test arguments
args = args_;
// Configure logger
log_h.set_level(args.log_level);
// PHY arguments
phy_args.log.phy_level = args.log_level;
phy_args.nof_phy_threads = 1; ///< Set number of phy threads to 1 for avoiding concurrency issues
// Create cell configuration
phy_cfg.phy_cell_cfg.resize(args.nof_enb_cells);
for (uint32_t i = 0; i < args.nof_enb_cells; i++) {
auto& q = phy_cfg.phy_cell_cfg[i];
q.cell = args.cell;
q.cell.id = i;
q.cell_id = i;
q.dl_freq_hz = 0.0f; ///< Frequencies are irrelevant in this test
q.ul_freq_hz = 0.0f;
q.root_seq_idx = 25 + i; ///< Different PRACH root sequences
q.rf_port = i;
}
phy_cfg.pucch_cnfg.delta_pucch_shift = asn1::rrc::pucch_cfg_common_s::delta_pucch_shift_e_::ds3;
phy_cfg.prach_cnfg.root_seq_idx = 0;
phy_cfg.prach_cnfg.prach_cfg_info.high_speed_flag = false;
phy_cfg.prach_cnfg.prach_cfg_info.prach_cfg_idx = 3;
phy_cfg.prach_cnfg.prach_cfg_info.prach_freq_offset = 2;
phy_cfg.prach_cnfg.prach_cfg_info.zero_correlation_zone_cfg = 5;
// Create base UE dedicated configuration
srslte::phy_cfg_t dedicated = {};
dedicated.ul_cfg.pucch.ack_nack_feedback_mode = srslte_string_ack_nack_feedback_mode(args.ack_mode.c_str());
dedicated.ul_cfg.pucch.delta_pucch_shift = delta_pucch;
dedicated.ul_cfg.pucch.n_rb_2 = 2;
dedicated.ul_cfg.pucch.N_cs = 0;
dedicated.ul_cfg.pucch.n_pucch_sr = 0;
dedicated.ul_cfg.pucch.N_pucch_1 = N_pucch_1;
dedicated.ul_cfg.pucch.n_pucch_2 = 5;
dedicated.ul_cfg.pucch.simul_cqi_ack = true;
dedicated.ul_cfg.pucch.sr_configured = true;
dedicated.ul_cfg.pucch.I_sr = 5;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[0][0] = N_pucch_1 + delta_pucch * 1;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[1][0] = N_pucch_1 + delta_pucch * 2;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[2][0] = N_pucch_1 + delta_pucch * 3;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[3][0] = N_pucch_1 + delta_pucch * 4;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[0][1] = N_pucch_1 + delta_pucch * 2;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[1][1] = N_pucch_1 + delta_pucch * 3;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[2][1] = N_pucch_1 + delta_pucch * 4;
dedicated.ul_cfg.pucch.n1_pucch_an_cs[3][1] = N_pucch_1 + delta_pucch * 1;
dedicated.dl_cfg.cqi_report.periodic_configured = true;
dedicated.dl_cfg.cqi_report.pmi_idx = 25;
dedicated.dl_cfg.cqi_report.periodic_mode = SRSLTE_CQI_MODE_20;
dedicated.ul_cfg.pusch.uci_offset.I_offset_ack = 7;
// Configure UE PHY
bool activation[SRSLTE_MAX_CARRIERS] = {}; ///< Activation/Deactivation vector
phy_rrc_cfg.resize(args.ue_cell_list.size());
for (uint32_t i = 0; i < args.ue_cell_list.size(); i++) {
phy_rrc_cfg[i].enb_cc_idx = args.ue_cell_list[i]; ///< First element is PCell
phy_rrc_cfg[i].configured = true; ///< All configured by default
phy_rrc_cfg[i].phy_cfg = dedicated; ///< Load the same in all by default
phy_rrc_cfg[i].phy_cfg.dl_cfg.cqi_report.pmi_idx += i; ///< CQI report depend on SCell index
// Disable SCell stuff
if (i != 0) {
phy_rrc_cfg[i].phy_cfg.ul_cfg.pucch.sr_configured = false;
}
/// All the cell/carriers are activated from the beggining
activation[i] = true;
}
/// Create Radio instance
radio = unique_dummy_radio_t(new dummy_radio(args.nof_enb_cells, args.cell.nof_prb, args.log_level));
/// Create Dummy Stack isntance
stack = unique_dummy_stack_t(new dummy_stack(phy_cfg, args.log_level, args.rnti, args.ue_cell_list));
/// eNb PHY initialisation instance
enb_phy = unique_srsenb_phy_t(new srsenb::phy(&logger_stdout));
/// Initiate eNb PHY with the given RNTI
enb_phy->init(phy_args, phy_cfg, radio.get(), stack.get());
enb_phy->add_rnti(args.rnti, args.ue_cell_list[0], false);
enb_phy->set_config_dedicated(args.rnti, phy_rrc_cfg);
enb_phy->set_activation_deactivation_scell(args.rnti, activation);
/// Create dummy UE instance
ue_phy =
unique_dummy_ue_phy_t(new dummy_ue(radio.get(), phy_cfg.phy_cell_cfg, args.log_level, args.rnti, phy_rrc_cfg));
}
~phy_test_bench()
{
radio->stop();
enb_phy->stop();
}
int run_tti()
{
int ret = SRSLTE_SUCCESS;
stack->tti_clock();
TESTASSERT(not stack->get_received_rl_failure());
TESTASSERT(ue_phy->run_tti() >= SRSLTE_SUCCESS);
TESTASSERT(stack->run_tti() >= SRSLTE_SUCCESS);
return ret;
}
};
typedef std::unique_ptr<phy_test_bench> unique_phy_test_bench;
namespace bpo = boost::program_options;
int parse_args(int argc, char** argv, phy_test_bench::args_t& args)
{
int ret = SRSLTE_SUCCESS;
bpo::options_description options;
bpo::options_description common("Common execution options");
// clang-format off
common.add_options()
("duration", bpo::value<uint32_t>(&args.duration), "Duration of the execution in subframes")
("rnti", bpo::value<uint16_t>(&args.rnti), "UE RNTI, used for random seed")
("log_level", bpo::value<std::string>(&args.log_level), "General logging level")
("nof_enb_cells", bpo::value<uint32_t>(&args.nof_enb_cells), "Cell Number of PRB")
("ue_cell_list", bpo::value<std::string>(&args.ue_cell_list_str), "UE active cell list, the first is used as PCell")
("ack_mode", bpo::value<std::string>(&args.ack_mode), "HARQ ACK/NACK mode: normal, pucch3, cs")
("cell.nof_prb", bpo::value<uint32_t>(&args.cell.nof_prb)->default_value(args.cell.nof_prb), "eNb Cell/Carrier bandwidth")
("cell.nof_ports", bpo::value<uint32_t>(&args.cell.nof_ports)->default_value(args.cell.nof_ports), "eNb Cell/Carrier number of ports")
;
options.add(common).add_options()("help", "Show this message");
// clang-format on
bpo::variables_map vm;
try {
bpo::store(bpo::command_line_parser(argc, argv).options(options).run(), vm);
bpo::notify(vm);
} catch (bpo::error& e) {
std::cerr << e.what() << std::endl;
ret = SRSLTE_ERROR;
}
// populate UE Active cell list
if (not args.ue_cell_list_str.empty()) {
args.ue_cell_list.clear();
std::stringstream ss(args.ue_cell_list_str);
while (ss.good()) {
std::string substr;
getline(ss, substr, ',');
auto pci = (uint32_t)strtoul(substr.c_str(), nullptr, 10);
args.ue_cell_list.push_back(pci);
}
} else {
return SRSLTE_ERROR;
}
// help option was given or error - print usage and exit
if (vm.count("help") || ret) {
std::cout << "Usage: " << argv[0] << " [OPTIONS] config_file" << std::endl << std::endl;
std::cout << options << std::endl << std::endl;
ret = SRSLTE_ERROR;
}
return ret;
}
int main(int argc, char** argv)
{
phy_test_bench::args_t test_args;
// Parse arguments
TESTASSERT(parse_args(argc, argv, test_args) == SRSLTE_SUCCESS);
// Create Test Bench
unique_phy_test_bench test_bench = unique_phy_test_bench(new phy_test_bench(test_args));
// Run Simulation
for (uint32_t i = 0; i < test_args.duration + 1; i++) {
TESTASSERT(test_bench->run_tti() >= SRSLTE_SUCCESS);
}
std::cout << "Passed" << std::endl;
return SRSLTE_SUCCESS;
}