mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
660 lines
22 KiB
C
660 lines
22 KiB
C
/**
|
|
*
|
|
* \section COPYRIGHT
|
|
*
|
|
* Copyright 2013-2015 Software Radio Systems Limited
|
|
*
|
|
* \section LICENSE
|
|
*
|
|
* This file is part of the srsLTE library.
|
|
*
|
|
* srsLTE is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Affero General Public License as
|
|
* published by the Free Software Foundation, either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* srsLTE is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Affero General Public License for more details.
|
|
*
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
* and at http://www.gnu.org/licenses/.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <complex.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "srslte/common/phy_common.h"
|
|
#include "srslte/mimo/precoding.h"
|
|
#include "srslte/utils/vector.h"
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
#include <xmmintrin.h>
|
|
#include <pmmintrin.h>
|
|
int srslte_predecoding_single_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate);
|
|
int srslte_predecoding_diversity2_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT], cf_t *x[SRSLTE_MAX_LAYERS], int nof_rxant, int nof_symbols);
|
|
#endif
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
#include <immintrin.h>
|
|
int srslte_predecoding_single_avx(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate);
|
|
#endif
|
|
|
|
|
|
|
|
/************************************************
|
|
*
|
|
* RECEIVER SIDE FUNCTIONS
|
|
*
|
|
**************************************************/
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
|
|
#define PROD(a,b) _mm_addsub_ps(_mm_mul_ps(a,_mm_moveldup_ps(b)),_mm_mul_ps(_mm_shuffle_ps(a,a,0xB1),_mm_movehdup_ps(b)))
|
|
|
|
int srslte_predecoding_single_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate) {
|
|
|
|
float *xPtr = (float*) x;
|
|
const float *hPtr1 = (const float*) h[0];
|
|
const float *yPtr1 = (const float*) y[0];
|
|
const float *hPtr2 = (const float*) h[1];
|
|
const float *yPtr2 = (const float*) y[1];
|
|
|
|
__m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
|
|
|
|
__m128 noise = _mm_set1_ps(noise_estimate);
|
|
__m128 h1Val1, h2Val1, y1Val1, y2Val1;
|
|
__m128 h1Val2, h2Val2, y1Val2, y2Val2;
|
|
__m128 hsquare, h1square, h2square, h1conj1, h2conj1, x1Val1, x2Val1;
|
|
__m128 hsquare2, h1conj2, h2conj2, x1Val2, x2Val2;
|
|
|
|
for (int i=0;i<nof_symbols/4;i++) {
|
|
y1Val1 = _mm_load_ps(yPtr1); yPtr1+=4;
|
|
y2Val1 = _mm_load_ps(yPtr1); yPtr1+=4;
|
|
h1Val1 = _mm_load_ps(hPtr1); hPtr1+=4;
|
|
h2Val1 = _mm_load_ps(hPtr1); hPtr1+=4;
|
|
|
|
if (nof_rxant == 2) {
|
|
y1Val2 = _mm_load_ps(yPtr2); yPtr2+=4;
|
|
y2Val2 = _mm_load_ps(yPtr2); yPtr2+=4;
|
|
h1Val2 = _mm_load_ps(hPtr2); hPtr2+=4;
|
|
h2Val2 = _mm_load_ps(hPtr2); hPtr2+=4;
|
|
}
|
|
|
|
hsquare = _mm_hadd_ps(_mm_mul_ps(h1Val1, h1Val1), _mm_mul_ps(h2Val1, h2Val1));
|
|
if (nof_rxant == 2) {
|
|
hsquare2 = _mm_hadd_ps(_mm_mul_ps(h1Val2, h1Val2), _mm_mul_ps(h2Val2, h2Val2));
|
|
hsquare = _mm_add_ps(hsquare, hsquare2);
|
|
}
|
|
if (noise_estimate > 0) {
|
|
hsquare = _mm_add_ps(hsquare, noise);
|
|
}
|
|
|
|
h1square = _mm_shuffle_ps(hsquare, hsquare, _MM_SHUFFLE(1, 1, 0, 0));
|
|
h2square = _mm_shuffle_ps(hsquare, hsquare, _MM_SHUFFLE(3, 3, 2, 2));
|
|
|
|
/* Conjugate channel */
|
|
h1conj1 = _mm_xor_ps(h1Val1, conjugator);
|
|
h2conj1 = _mm_xor_ps(h2Val1, conjugator);
|
|
|
|
if (nof_rxant == 2) {
|
|
h1conj2 = _mm_xor_ps(h1Val2, conjugator);
|
|
h2conj2 = _mm_xor_ps(h2Val2, conjugator);
|
|
}
|
|
|
|
/* Complex product */
|
|
x1Val1 = PROD(y1Val1, h1conj1);
|
|
x2Val1 = PROD(y2Val1, h2conj1);
|
|
|
|
if (nof_rxant == 2) {
|
|
x1Val2 = PROD(y1Val2, h1conj2);
|
|
x2Val2 = PROD(y2Val2, h2conj2);
|
|
x1Val1 = _mm_add_ps(x1Val1, x1Val2);
|
|
x2Val1 = _mm_add_ps(x2Val1, x2Val2);
|
|
}
|
|
|
|
x1Val1 = _mm_div_ps(x1Val1, h1square);
|
|
x2Val1 = _mm_div_ps(x2Val1, h2square);
|
|
|
|
_mm_store_ps(xPtr, x1Val1); xPtr+=4;
|
|
_mm_store_ps(xPtr, x2Val1); xPtr+=4;
|
|
|
|
}
|
|
for (int i=8*(nof_symbols/8);i<nof_symbols;i++) {
|
|
cf_t r = 0;
|
|
cf_t hh = 0;
|
|
for (int p=0;p<nof_rxant;p++) {
|
|
r += y[p][i]*conj(h[p][i]);
|
|
hh += conj(h[p][i])*h[p][i];
|
|
}
|
|
x[i] = r/(hh+noise_estimate);
|
|
}
|
|
return nof_symbols;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
|
|
#define PROD_AVX(a,b) _mm256_addsub_ps(_mm256_mul_ps(a,_mm256_moveldup_ps(b)),_mm256_mul_ps(_mm256_shuffle_ps(a,a,0xB1),_mm256_movehdup_ps(b)))
|
|
|
|
|
|
|
|
int srslte_predecoding_single_avx(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate) {
|
|
|
|
float *xPtr = (float*) x;
|
|
const float *hPtr1 = (const float*) h[0];
|
|
const float *yPtr1 = (const float*) y[0];
|
|
const float *hPtr2 = (const float*) h[1];
|
|
const float *yPtr2 = (const float*) y[1];
|
|
|
|
__m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
|
|
|
|
__m256 noise = _mm256_set1_ps(noise_estimate);
|
|
__m256 h1Val1, h2Val1, y1Val1, y2Val1, h12square, h1square, h2square, h1_p, h2_p, h1conj1, h2conj1, x1Val, x2Val;
|
|
__m256 h1Val2, h2Val2, y1Val2, y2Val2, h1conj2, h2conj2;
|
|
|
|
for (int i=0;i<nof_symbols/8;i++) {
|
|
y1Val1 = _mm256_load_ps(yPtr1); yPtr1+=8;
|
|
y2Val1 = _mm256_load_ps(yPtr1); yPtr1+=8;
|
|
h1Val1 = _mm256_load_ps(hPtr1); hPtr1+=8;
|
|
h2Val1 = _mm256_load_ps(hPtr1); hPtr1+=8;
|
|
|
|
if (nof_rxant == 2) {
|
|
y1Val2 = _mm256_load_ps(yPtr2); yPtr2+=8;
|
|
y2Val2 = _mm256_load_ps(yPtr2); yPtr2+=8;
|
|
h1Val2 = _mm256_load_ps(hPtr2); hPtr2+=8;
|
|
h2Val2 = _mm256_load_ps(hPtr2); hPtr2+=8;
|
|
}
|
|
|
|
__m256 t1 = _mm256_mul_ps(h1Val1, h1Val1);
|
|
__m256 t2 = _mm256_mul_ps(h2Val1, h2Val1);
|
|
h12square = _mm256_hadd_ps(_mm256_permute2f128_ps(t1, t2, 0x20), _mm256_permute2f128_ps(t1, t2, 0x31));
|
|
|
|
if (nof_rxant == 2) {
|
|
t1 = _mm256_mul_ps(h1Val2, h1Val2);
|
|
t2 = _mm256_mul_ps(h2Val2, h2Val2);
|
|
h12square = _mm256_add_ps(h12square, _mm256_hadd_ps(_mm256_permute2f128_ps(t1, t2, 0x20), _mm256_permute2f128_ps(t1, t2, 0x31)));
|
|
}
|
|
|
|
if (noise_estimate > 0) {
|
|
h12square = _mm256_add_ps(h12square, noise);
|
|
}
|
|
|
|
h1_p = _mm256_permute_ps(h12square, _MM_SHUFFLE(1, 1, 0, 0));
|
|
h2_p = _mm256_permute_ps(h12square, _MM_SHUFFLE(3, 3, 2, 2));
|
|
h1square = _mm256_permute2f128_ps(h1_p, h2_p, 2<<4);
|
|
h2square = _mm256_permute2f128_ps(h1_p, h2_p, 3<<4 | 1);
|
|
|
|
/* Conjugate channel */
|
|
h1conj1 = _mm256_xor_ps(h1Val1, conjugator);
|
|
h2conj1 = _mm256_xor_ps(h2Val1, conjugator);
|
|
|
|
if (nof_rxant == 2) {
|
|
h1conj2 = _mm256_xor_ps(h1Val2, conjugator);
|
|
h2conj2 = _mm256_xor_ps(h2Val2, conjugator);
|
|
}
|
|
|
|
/* Complex product */
|
|
x1Val = PROD_AVX(y1Val1, h1conj1);
|
|
x2Val = PROD_AVX(y2Val1, h2conj1);
|
|
|
|
if (nof_rxant == 2) {
|
|
x1Val = _mm256_add_ps(x1Val, PROD_AVX(y1Val2, h1conj2));
|
|
x2Val = _mm256_add_ps(x2Val, PROD_AVX(y2Val2, h2conj2));
|
|
}
|
|
|
|
x1Val = _mm256_div_ps(x1Val, h1square);
|
|
x2Val = _mm256_div_ps(x2Val, h2square);
|
|
|
|
_mm256_store_ps(xPtr, x1Val); xPtr+=8;
|
|
_mm256_store_ps(xPtr, x2Val); xPtr+=8;
|
|
}
|
|
for (int i=16*(nof_symbols/16);i<nof_symbols;i++) {
|
|
cf_t r = 0;
|
|
cf_t hh = 0;
|
|
for (int p=0;p<nof_rxant;p++) {
|
|
r += y[p][i]*conj(h[p][i]);
|
|
hh += conj(h[p][i])*h[p][i];
|
|
}
|
|
x[i] = r/(hh+noise_estimate);
|
|
}
|
|
return nof_symbols;
|
|
}
|
|
|
|
#endif
|
|
|
|
int srslte_predecoding_single_gen(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate) {
|
|
for (int i=0;i<nof_symbols;i++) {
|
|
cf_t r = 0;
|
|
cf_t hh = 0;
|
|
for (int p=0;p<nof_rxant;p++) {
|
|
r += y[p][i]*conj(h[p][i]);
|
|
hh += conj(h[p][i])*h[p][i];
|
|
}
|
|
x[i] = r/(hh+noise_estimate);
|
|
}
|
|
return nof_symbols;
|
|
}
|
|
|
|
/* ZF/MMSE SISO equalizer x=y(h'h+no)^(-1)h' (ZF if n0=0.0)*/
|
|
int srslte_predecoding_single(cf_t *y_, cf_t *h_, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
cf_t *y[SRSLTE_MAX_RXANT];
|
|
cf_t *h[SRSLTE_MAX_RXANT];
|
|
y[0] = y_;
|
|
h[0] = h_;
|
|
int nof_rxant = 1;
|
|
|
|
#ifdef LV_HAVE_AVX
|
|
if (nof_symbols > 32 && nof_rxant <= 2) {
|
|
return srslte_predecoding_single_avx(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
} else {
|
|
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
}
|
|
#else
|
|
#ifdef LV_HAVE_SSE
|
|
if (nof_symbols > 32 && nof_rxant <= 2) {
|
|
return srslte_predecoding_single_sse(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
} else {
|
|
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
}
|
|
#else
|
|
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/* ZF/MMSE SISO equalizer x=y(h'h+no)^(-1)h' (ZF if n0=0.0)*/
|
|
int srslte_predecoding_single_multi(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_RXANT], cf_t *x, int nof_rxant, int nof_symbols, float noise_estimate) {
|
|
#ifdef LV_HAVE_AVX
|
|
if (nof_symbols > 32) {
|
|
return srslte_predecoding_single_avx(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
} else {
|
|
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
}
|
|
#else
|
|
#ifdef LV_HAVE_SSE
|
|
if (nof_symbols > 32) {
|
|
return srslte_predecoding_single_sse(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
} else {
|
|
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
}
|
|
#else
|
|
return srslte_predecoding_single_gen(y, h, x, nof_rxant, nof_symbols, noise_estimate);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/* C implementatino of the SFBC equalizer */
|
|
int srslte_predecoding_diversity_gen_(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
|
|
cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_rxant, int nof_ports, int nof_symbols, int symbol_start)
|
|
{
|
|
int i;
|
|
if (nof_ports == 2) {
|
|
cf_t h00, h01, h10, h11, r0, r1;
|
|
|
|
for (i = symbol_start/2; i < nof_symbols / 2; i++) {
|
|
float hh = 0;
|
|
cf_t x0 = 0;
|
|
cf_t x1 = 0;
|
|
for (int p=0;p<nof_rxant;p++) {
|
|
h00 = h[0][p][2 * i];
|
|
h01 = h[0][p][2 * i+1];
|
|
h10 = h[1][p][2 * i];
|
|
h11 = h[1][p][2 * i+1];
|
|
hh += crealf(h00) * crealf(h00) + cimagf(h00) * cimagf(h00)
|
|
+ crealf(h11) * crealf(h11) + cimagf(h11) * cimagf(h11);
|
|
r0 = y[p][2 * i];
|
|
r1 = y[p][2 * i + 1];
|
|
if (hh == 0) {
|
|
hh = 1e-4;
|
|
}
|
|
x0 += (conjf(h00) * r0 + h11 * conjf(r1));
|
|
x1 += (-h10 * conj(r0) + conj(h01) * r1);
|
|
}
|
|
x[0][i] = x0 / hh * sqrt(2);
|
|
x[1][i] = x1 / hh * sqrt(2);
|
|
}
|
|
return i;
|
|
} else if (nof_ports == 4) {
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
|
|
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
|
|
for (i = symbol_start; i < m_ap; i++) {
|
|
float hh02 = 0, hh13 = 0;
|
|
cf_t x0 = 0, x1 = 0, x2 = 0, x3 = 0;
|
|
for (int p=0;p<nof_rxant;p++) {
|
|
h0 = h[0][p][4 * i];
|
|
h1 = h[1][p][4 * i + 2];
|
|
h2 = h[2][p][4 * i];
|
|
h3 = h[3][p][4 * i + 2];
|
|
hh02 += crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
|
|
hh13 += crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
|
|
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
|
|
r0 = y[p][4 * i];
|
|
r1 = y[p][4 * i + 1];
|
|
r2 = y[p][4 * i + 2];
|
|
r3 = y[p][4 * i + 3];
|
|
|
|
x0 += (conjf(h0) * r0 + h2 * conjf(r1));
|
|
x1 += (-h2 * conjf(r0) + conjf(h0) * r1);
|
|
x2 += (conjf(h1) * r2 + h3 * conjf(r3));
|
|
x3 += (-h3 * conjf(r2) + conjf(h1) * r3);
|
|
}
|
|
x[0][i] = x0 / hh02 * sqrt(2);
|
|
x[1][i] = x1 / hh02 * sqrt(2);
|
|
x[2][i] = x2 / hh13 * sqrt(2);
|
|
x[3][i] = x3 / hh13 * sqrt(2);
|
|
}
|
|
return i;
|
|
} else {
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int srslte_predecoding_diversity_gen(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
|
|
cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_rxant, int nof_ports, int nof_symbols) {
|
|
return srslte_predecoding_diversity_gen_(y, h, x, nof_rxant, nof_ports, nof_symbols, 0);
|
|
}
|
|
|
|
/* SSE implementation of the 2-port SFBC equalizer */
|
|
#ifdef LV_HAVE_SSE
|
|
int srslte_predecoding_diversity2_sse(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT],
|
|
cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_rxant, int nof_symbols)
|
|
{
|
|
float *x0Ptr = (float*) x[0];
|
|
float *x1Ptr = (float*) x[1];
|
|
const float *h0Ptr0 = (const float*) h[0][0];
|
|
const float *h1Ptr0 = (const float*) h[1][0];
|
|
const float *h0Ptr1 = (const float*) h[0][1];
|
|
const float *h1Ptr1 = (const float*) h[1][1];
|
|
const float *yPtr0 = (const float*) y[0];
|
|
const float *yPtr1 = (const float*) y[1];
|
|
|
|
__m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
|
|
__m128 sqrt2 = _mm_setr_ps(sqrt(2), sqrt(2), sqrt(2), sqrt(2));
|
|
|
|
__m128 h0Val_00, h0Val_10, h1Val_00, h1Val_10, h000, h00conj0, h010, h01conj0, h100, h110;
|
|
__m128 h0Val_01, h0Val_11, h1Val_01, h1Val_11, h001, h00conj1, h011, h01conj1, h101, h111;
|
|
__m128 hh, hhshuf, hhsum, hhadd;
|
|
__m128 r0Val0, r1Val0, r00, r10, r0conj0, r1conj0;
|
|
__m128 r0Val1, r1Val1, r01, r11, r0conj1, r1conj1;
|
|
__m128 x0, x1;
|
|
|
|
for (int i=0;i<nof_symbols/4;i++) {
|
|
|
|
h0Val_00 = _mm_load_ps(h0Ptr0); h0Ptr0+=4; h0Val_10 = _mm_load_ps(h0Ptr0); h0Ptr0+=4;
|
|
h1Val_00 = _mm_load_ps(h1Ptr0); h1Ptr0+=4; h1Val_10 = _mm_load_ps(h1Ptr0); h1Ptr0+=4;
|
|
|
|
if (nof_rxant == 2) {
|
|
h0Val_01 = _mm_load_ps(h0Ptr1); h0Ptr1+=4; h0Val_11 = _mm_load_ps(h0Ptr1); h0Ptr1+=4;
|
|
h1Val_01 = _mm_load_ps(h1Ptr1); h1Ptr1+=4; h1Val_11 = _mm_load_ps(h1Ptr1); h1Ptr1+=4;
|
|
}
|
|
|
|
h000 = _mm_shuffle_ps(h0Val_00, h0Val_10, _MM_SHUFFLE(1, 0, 1, 0));
|
|
h010 = _mm_shuffle_ps(h0Val_00, h0Val_10, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
h100 = _mm_shuffle_ps(h1Val_00, h1Val_10, _MM_SHUFFLE(1, 0, 1, 0));
|
|
h110 = _mm_shuffle_ps(h1Val_00, h1Val_10, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
if (nof_rxant == 2) {
|
|
h001 = _mm_shuffle_ps(h0Val_01, h0Val_11, _MM_SHUFFLE(1, 0, 1, 0));
|
|
h011 = _mm_shuffle_ps(h0Val_01, h0Val_11, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
h101 = _mm_shuffle_ps(h1Val_01, h1Val_11, _MM_SHUFFLE(1, 0, 1, 0));
|
|
h111 = _mm_shuffle_ps(h1Val_01, h1Val_11, _MM_SHUFFLE(3, 2, 3, 2));
|
|
}
|
|
|
|
r0Val0 = _mm_load_ps(yPtr0); yPtr0+=4;
|
|
r1Val0 = _mm_load_ps(yPtr0); yPtr0+=4;
|
|
r00 = _mm_shuffle_ps(r0Val0, r1Val0, _MM_SHUFFLE(1, 0, 1, 0));
|
|
r10 = _mm_shuffle_ps(r0Val0, r1Val0, _MM_SHUFFLE(3, 2, 3, 2));
|
|
|
|
if (nof_rxant == 2) {
|
|
r0Val1 = _mm_load_ps(yPtr1); yPtr1+=4;
|
|
r1Val1 = _mm_load_ps(yPtr1); yPtr1+=4;
|
|
r01 = _mm_shuffle_ps(r0Val1, r1Val1, _MM_SHUFFLE(1, 0, 1, 0));
|
|
r11 = _mm_shuffle_ps(r0Val1, r1Val1, _MM_SHUFFLE(3, 2, 3, 2));
|
|
}
|
|
|
|
/* Compute channel gain */
|
|
hhadd = _mm_hadd_ps(_mm_mul_ps(h000, h000), _mm_mul_ps(h110, h110));
|
|
hhshuf = _mm_shuffle_ps(hhadd, hhadd, _MM_SHUFFLE(3, 1, 2, 0));
|
|
hhsum = _mm_hadd_ps(hhshuf, hhshuf);
|
|
hh = _mm_shuffle_ps(hhsum, hhsum, _MM_SHUFFLE(1, 1, 0, 0)); // h00^2+h11^2
|
|
|
|
/* Add channel from 2nd antenna */
|
|
if (nof_rxant == 2) {
|
|
hhadd = _mm_hadd_ps(_mm_mul_ps(h001, h001), _mm_mul_ps(h111, h111));
|
|
hhshuf = _mm_shuffle_ps(hhadd, hhadd, _MM_SHUFFLE(3, 1, 2, 0));
|
|
hhsum = _mm_hadd_ps(hhshuf, hhshuf);
|
|
hh = _mm_add_ps(hh, _mm_shuffle_ps(hhsum, hhsum, _MM_SHUFFLE(1, 1, 0, 0))); // h00^2+h11^2
|
|
}
|
|
|
|
// Conjugate value
|
|
h00conj0 = _mm_xor_ps(h000, conjugator);
|
|
h01conj0 = _mm_xor_ps(h010, conjugator);
|
|
r0conj0 = _mm_xor_ps(r00, conjugator);
|
|
r1conj0 = _mm_xor_ps(r10, conjugator);
|
|
|
|
if (nof_rxant == 2) {
|
|
h00conj1 = _mm_xor_ps(h001, conjugator);
|
|
h01conj1 = _mm_xor_ps(h011, conjugator);
|
|
r0conj1 = _mm_xor_ps(r01, conjugator);
|
|
r1conj1 = _mm_xor_ps(r11, conjugator);
|
|
}
|
|
|
|
// Multiply by channel matrix
|
|
x0 = _mm_add_ps(PROD(h00conj0, r00), PROD(h110, r1conj0));
|
|
x1 = _mm_sub_ps(PROD(h01conj0, r10), PROD(h100, r0conj0));
|
|
|
|
// Add received symbol from 2nd antenna
|
|
if (nof_rxant == 2) {
|
|
x0 = _mm_add_ps(x0, _mm_add_ps(PROD(h00conj1, r01), PROD(h111, r1conj1)));
|
|
x1 = _mm_add_ps(x1, _mm_sub_ps(PROD(h01conj1, r11), PROD(h101, r0conj1)));
|
|
}
|
|
|
|
x0 = _mm_mul_ps(_mm_div_ps(x0, hh), sqrt2);
|
|
x1 = _mm_mul_ps(_mm_div_ps(x1, hh), sqrt2);
|
|
|
|
_mm_store_ps(x0Ptr, x0); x0Ptr+=4;
|
|
_mm_store_ps(x1Ptr, x1); x1Ptr+=4;
|
|
}
|
|
// Compute remaining symbols using generic implementation
|
|
srslte_predecoding_diversity_gen_(y, h, x, nof_rxant, 2, nof_symbols, 4*(nof_symbols/4));
|
|
return nof_symbols;
|
|
}
|
|
#endif
|
|
|
|
int srslte_predecoding_diversity(cf_t *y_, cf_t *h_[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_ports, int nof_symbols)
|
|
{
|
|
cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT];
|
|
cf_t *y[SRSLTE_MAX_RXANT];
|
|
uint32_t nof_rxant = 1;
|
|
|
|
for (int i=0;i<nof_ports;i++) {
|
|
h[i][0] = h_[i];
|
|
}
|
|
y[0] = y_;
|
|
|
|
#ifdef LV_HAVE_SSE
|
|
if (nof_symbols > 32 && nof_ports == 2) {
|
|
return srslte_predecoding_diversity2_sse(y, h, x, nof_rxant, nof_symbols);
|
|
} else {
|
|
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
|
|
}
|
|
#else
|
|
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
|
|
#endif
|
|
}
|
|
|
|
int srslte_predecoding_diversity_multi(cf_t *y[SRSLTE_MAX_RXANT], cf_t *h[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_rxant, int nof_ports, int nof_symbols)
|
|
{
|
|
#ifdef LV_HAVE_SSE
|
|
if (nof_symbols > 32 && nof_ports == 2) {
|
|
return srslte_predecoding_diversity2_sse(y, h, x, nof_rxant, nof_symbols);
|
|
} else {
|
|
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
|
|
}
|
|
#else
|
|
return srslte_predecoding_diversity_gen(y, h, x, nof_rxant, nof_ports, nof_symbols);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
int srslte_predecoding_type(cf_t *y, cf_t *h[SRSLTE_MAX_PORTS], cf_t *x[SRSLTE_MAX_LAYERS],
|
|
int nof_ports, int nof_layers, int nof_symbols, srslte_mimo_type_t type, float noise_estimate) {
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
nof_ports);
|
|
return -1;
|
|
}
|
|
if (nof_layers > SRSLTE_MAX_LAYERS) {
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
SRSLTE_MAX_LAYERS, nof_layers);
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA:
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
return srslte_predecoding_single(y, h[0], x[0], nof_symbols, noise_estimate);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SRSLTE_MIMO_TYPE_TX_DIVERSITY:
|
|
if (nof_ports == nof_layers) {
|
|
return srslte_predecoding_diversity(y, h, x, nof_ports, nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX:
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/************************************************
|
|
*
|
|
* TRANSMITTER SIDE FUNCTIONS
|
|
*
|
|
**************************************************/
|
|
|
|
int srslte_precoding_single(cf_t *x, cf_t *y, int nof_symbols) {
|
|
memcpy(y, x, nof_symbols * sizeof(cf_t));
|
|
return nof_symbols;
|
|
}
|
|
int srslte_precoding_diversity(cf_t *x[SRSLTE_MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_ports,
|
|
int nof_symbols) {
|
|
int i;
|
|
if (nof_ports == 2) {
|
|
for (i = 0; i < nof_symbols; i++) {
|
|
y[0][2 * i] = x[0][i];
|
|
y[1][2 * i] = -conjf(x[1][i]);
|
|
y[0][2 * i + 1] = x[1][i];
|
|
y[1][2 * i + 1] = conjf(x[0][i]);
|
|
}
|
|
// normalize
|
|
srslte_vec_sc_prod_cfc(y[0], 1.0/sqrtf(2), y[0], 2*nof_symbols);
|
|
srslte_vec_sc_prod_cfc(y[1], 1.0/sqrtf(2), y[1], 2*nof_symbols);
|
|
return 2 * i;
|
|
} else if (nof_ports == 4) {
|
|
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
|
|
int m_ap = 4 * nof_symbols;
|
|
for (i = 0; i < m_ap / 4; i++) {
|
|
y[0][4 * i] = x[0][i] / sqrtf(2);
|
|
y[1][4 * i] = 0;
|
|
y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
y[3][4 * i] = 0;
|
|
|
|
y[0][4 * i + 1] = x[1][i] / sqrtf(2);
|
|
y[1][4 * i + 1] = 0;
|
|
y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
y[3][4 * i + 1] = 0;
|
|
|
|
y[0][4 * i + 2] = 0;
|
|
y[1][4 * i + 2] = x[2][i] / sqrtf(2);
|
|
y[2][4 * i + 2] = 0;
|
|
y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2);
|
|
|
|
y[0][4 * i + 3] = 0;
|
|
y[1][4 * i + 3] = x[3][i] / sqrtf(2);
|
|
y[2][4 * i + 3] = 0;
|
|
y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2);
|
|
}
|
|
return 4 * i;
|
|
} else {
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
int srslte_precoding_type(cf_t *x[SRSLTE_MAX_LAYERS], cf_t *y[SRSLTE_MAX_PORTS], int nof_layers,
|
|
int nof_ports, int nof_symbols, srslte_mimo_type_t type) {
|
|
|
|
if (nof_ports > SRSLTE_MAX_PORTS) {
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", SRSLTE_MAX_PORTS,
|
|
nof_ports);
|
|
return -1;
|
|
}
|
|
if (nof_layers > SRSLTE_MAX_LAYERS) {
|
|
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n",
|
|
SRSLTE_MAX_LAYERS, nof_layers);
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA:
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
return srslte_precoding_single(x[0], y[0], nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
case SRSLTE_MIMO_TYPE_TX_DIVERSITY:
|
|
if (nof_ports == nof_layers) {
|
|
return srslte_precoding_diversity(x, y, nof_ports, nof_symbols);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
return -1;
|
|
}
|
|
case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX:
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|