You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/matlab/tests/dmrs_equalizer_test.m

185 lines
5.0 KiB
Matlab

%% LTE Downlink Channel Estimation and Equalization
%% Cell-Wide Settings
clear
plot_noise_estimation_only=false;
SNR_values_db=linspace(0,30,5);
Nrealizations=1;
w1=1/3;
%% UE Configuration
ue = lteRMCUL('A3-5');
ue.TotSubframes = 2;
K=ue.NULRB*12;
P=K/6;
%% Channel Model Configuration
chs.Seed = 1; % Random channel seed
chs.InitTime = 0;
chs.NRxAnts = 1; % 1 receive antenna
chs.DelayProfile = 'EVA';
chs.DopplerFreq = 300; % 120Hz Doppler frequency
chs.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
chs.NTerms = 16; % Oscillators used in fading model
chs.ModelType = 'GMEDS'; % Rayleigh fading model type
chs.InitPhase = 'Random'; % Random initial phases
chs.NormalizePathGains = 'On'; % Normalize delay profile power
chs.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
%% Channel Estimator Configuration
cec = struct; % Channel estimation config structure
cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging
cec.FreqWindow = 9; % Frequency window size
cec.TimeWindow = 9; % Time window size
cec.InterpType = 'Linear'; % 2D interpolation type
cec.InterpWindow = 'Causal'; % Interpolation window type
cec.InterpWinSize = 1; % Interpolation window size
%% Allocate memory
Ntests=3;
hest=cell(1,Ntests);
for i=1:Ntests
hest{i}=zeros(K,14);
end
MSE=zeros(Ntests,Nrealizations,length(SNR_values_db));
noiseEst=zeros(Ntests,Nrealizations,length(SNR_values_db));
legends={'matlab','ls',num2str(w1)};
colors={'bo-','rx-','m*-','k+-','c+-'};
colors2={'b-','r-','m-','k-','c-'};
addpath('../../build/srslte/lib/ch_estimation/test')
offset = -1;
for nreal=1:Nrealizations
%% Signal Generation
[txWaveform, txGrid, info] = lteRMCULTool(ue,[1;0;0;1]);
%% SNR Configuration
for snr_idx=1:length(SNR_values_db)
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
SNR = 10^(SNRdB/20); % Linear SNR
fprintf('SNR=%.1f dB\n',SNRdB)
%% Fading Channel
chs.SamplingRate = info.SamplingRate;
[rxWaveform, chinfo] = lteFadingChannel(chs,txWaveform);
%% Additive Noise
% Calculate noise gain
N0 = 1/(sqrt(2.0*double(info.Nfft))*SNR);
% Create additive white Gaussian noise
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
% Add noise to the received time domain waveform
rxWaveform = rxWaveform + noise;
%% Synchronization
% Time offset estimation is done once because depends on channel
% model only
if (offset==-1)
offset = lteULFrameOffset(ue,ue.PUSCH,rxWaveform);
end
rxWaveform = rxWaveform(1+offset:end);
%% OFDM Demodulation
rxGrid = lteSCFDMADemodulate(ue,rxWaveform);
rxGrid = rxGrid(:,1:14);
%% Perfect channel estimate
h=lteULPerfectChannelEstimate(ue,chs,offset);
h=h(:,1:14);
%% Channel Estimation with Matlab
[hest{1}, noiseEst(1,nreal,snr_idx)] = lteULChannelEstimate(ue,ue.PUSCH,cec,rxGrid);
%% LS-Linear estimation with srsLTE
[hest{2}, noiseEst(2,nreal,snr_idx)] = srslte_chest_ul(ue,ue.PUSCH,rxGrid);
%% LS-Linear estimation + averaging with srsLTE
[hest{3}, noiseEst(3,nreal,snr_idx)] = srslte_chest_ul(ue,ue.PUSCH,rxGrid,w1);
%% Compute MSE
for i=1:Ntests
MSE(i,nreal,snr_idx)=mean(mean(abs(h-hest{i}).^2));
fprintf('MSE test %d: %f\n',i, 10*log10(MSE(i,nreal,snr_idx)));
end
%% Plot a single realization
if (length(SNR_values_db) == 1)
subplot(1,1,1)
sym=1;
n=1:(K*length(sym));
for i=1:Ntests
plot(n,abs(reshape(hest{i}(:,sym),1,[])),colors2{i});
hold on;
end
plot(n,abs(reshape(h(:,sym),1,[])),'k');
hold off;
tmp=cell(Ntests+1,1);
for i=1:Ntests
tmp{i}=legends{i};
end
tmp{Ntests+1}='Perfect';
legend(tmp)
xlabel('SNR (dB)')
ylabel('Channel Gain')
grid on;
end
end
end
%% Compute average MSE and noise estimation
mean_mse=mean(MSE,2);
mean_snr=10*log10(1./mean(noiseEst,2));
%disp(mean_snr(3)
%% Plot average over all SNR values
if (length(SNR_values_db) > 1)
subplot(1,2,1)
for i=1:Ntests
plot(SNR_values_db, 10*log10(mean_mse(i,:)),colors{i})
hold on;
end
hold off;
legend(legends);
grid on
xlabel('SNR (dB)')
ylabel('MSE (dB)')
subplot(1,2,2)
plot(SNR_values_db, SNR_values_db,'k:')
hold on;
for i=1:Ntests
plot(SNR_values_db, mean_snr(i,:), colors{i})
end
hold off
tmp=cell(Ntests+1,1);
tmp{1}='Theory';
for i=2:Ntests+1
tmp{i}=legends{i-1};
end
legend(tmp)
grid on
xlabel('SNR (dB)')
ylabel('Estimated SNR (dB)')
end