mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
5.0 KiB
Matlab
185 lines
5.0 KiB
Matlab
%% LTE Downlink Channel Estimation and Equalization
|
|
|
|
%% Cell-Wide Settings
|
|
|
|
clear
|
|
|
|
plot_noise_estimation_only=false;
|
|
|
|
SNR_values_db=linspace(0,30,5);
|
|
Nrealizations=1;
|
|
|
|
w1=1/3;
|
|
|
|
%% UE Configuration
|
|
ue = lteRMCUL('A3-5');
|
|
ue.TotSubframes = 2;
|
|
|
|
K=ue.NULRB*12;
|
|
P=K/6;
|
|
|
|
%% Channel Model Configuration
|
|
chs.Seed = 1; % Random channel seed
|
|
chs.InitTime = 0;
|
|
chs.NRxAnts = 1; % 1 receive antenna
|
|
chs.DelayProfile = 'EVA';
|
|
chs.DopplerFreq = 300; % 120Hz Doppler frequency
|
|
chs.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
|
|
chs.NTerms = 16; % Oscillators used in fading model
|
|
chs.ModelType = 'GMEDS'; % Rayleigh fading model type
|
|
chs.InitPhase = 'Random'; % Random initial phases
|
|
chs.NormalizePathGains = 'On'; % Normalize delay profile power
|
|
chs.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
|
|
|
|
%% Channel Estimator Configuration
|
|
cec = struct; % Channel estimation config structure
|
|
cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging
|
|
cec.FreqWindow = 9; % Frequency window size
|
|
cec.TimeWindow = 9; % Time window size
|
|
cec.InterpType = 'Linear'; % 2D interpolation type
|
|
cec.InterpWindow = 'Causal'; % Interpolation window type
|
|
cec.InterpWinSize = 1; % Interpolation window size
|
|
|
|
|
|
%% Allocate memory
|
|
Ntests=3;
|
|
hest=cell(1,Ntests);
|
|
for i=1:Ntests
|
|
hest{i}=zeros(K,14);
|
|
end
|
|
MSE=zeros(Ntests,Nrealizations,length(SNR_values_db));
|
|
noiseEst=zeros(Ntests,Nrealizations,length(SNR_values_db));
|
|
|
|
legends={'matlab','ls',num2str(w1)};
|
|
colors={'bo-','rx-','m*-','k+-','c+-'};
|
|
colors2={'b-','r-','m-','k-','c-'};
|
|
|
|
addpath('../../build/srslte/lib/ch_estimation/test')
|
|
|
|
offset = -1;
|
|
for nreal=1:Nrealizations
|
|
|
|
%% Signal Generation
|
|
[txWaveform, txGrid, info] = lteRMCULTool(ue,[1;0;0;1]);
|
|
|
|
%% SNR Configuration
|
|
for snr_idx=1:length(SNR_values_db)
|
|
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
|
|
SNR = 10^(SNRdB/20); % Linear SNR
|
|
|
|
fprintf('SNR=%.1f dB\n',SNRdB)
|
|
|
|
%% Fading Channel
|
|
|
|
chs.SamplingRate = info.SamplingRate;
|
|
[rxWaveform, chinfo] = lteFadingChannel(chs,txWaveform);
|
|
|
|
%% Additive Noise
|
|
|
|
% Calculate noise gain
|
|
N0 = 1/(sqrt(2.0*double(info.Nfft))*SNR);
|
|
|
|
% Create additive white Gaussian noise
|
|
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
|
|
|
|
% Add noise to the received time domain waveform
|
|
rxWaveform = rxWaveform + noise;
|
|
|
|
%% Synchronization
|
|
|
|
% Time offset estimation is done once because depends on channel
|
|
% model only
|
|
if (offset==-1)
|
|
offset = lteULFrameOffset(ue,ue.PUSCH,rxWaveform);
|
|
end
|
|
rxWaveform = rxWaveform(1+offset:end);
|
|
|
|
%% OFDM Demodulation
|
|
rxGrid = lteSCFDMADemodulate(ue,rxWaveform);
|
|
rxGrid = rxGrid(:,1:14);
|
|
|
|
%% Perfect channel estimate
|
|
h=lteULPerfectChannelEstimate(ue,chs,offset);
|
|
h=h(:,1:14);
|
|
|
|
%% Channel Estimation with Matlab
|
|
[hest{1}, noiseEst(1,nreal,snr_idx)] = lteULChannelEstimate(ue,ue.PUSCH,cec,rxGrid);
|
|
|
|
%% LS-Linear estimation with srsLTE
|
|
[hest{2}, noiseEst(2,nreal,snr_idx)] = srslte_chest_ul(ue,ue.PUSCH,rxGrid);
|
|
|
|
%% LS-Linear estimation + averaging with srsLTE
|
|
[hest{3}, noiseEst(3,nreal,snr_idx)] = srslte_chest_ul(ue,ue.PUSCH,rxGrid,w1);
|
|
|
|
%% Compute MSE
|
|
for i=1:Ntests
|
|
MSE(i,nreal,snr_idx)=mean(mean(abs(h-hest{i}).^2));
|
|
fprintf('MSE test %d: %f\n',i, 10*log10(MSE(i,nreal,snr_idx)));
|
|
end
|
|
|
|
%% Plot a single realization
|
|
if (length(SNR_values_db) == 1)
|
|
subplot(1,1,1)
|
|
sym=1;
|
|
n=1:(K*length(sym));
|
|
for i=1:Ntests
|
|
plot(n,abs(reshape(hest{i}(:,sym),1,[])),colors2{i});
|
|
hold on;
|
|
end
|
|
plot(n,abs(reshape(h(:,sym),1,[])),'k');
|
|
hold off;
|
|
|
|
tmp=cell(Ntests+1,1);
|
|
for i=1:Ntests
|
|
tmp{i}=legends{i};
|
|
end
|
|
tmp{Ntests+1}='Perfect';
|
|
legend(tmp)
|
|
|
|
xlabel('SNR (dB)')
|
|
ylabel('Channel Gain')
|
|
grid on;
|
|
|
|
end
|
|
|
|
end
|
|
end
|
|
|
|
%% Compute average MSE and noise estimation
|
|
mean_mse=mean(MSE,2);
|
|
mean_snr=10*log10(1./mean(noiseEst,2));
|
|
|
|
%disp(mean_snr(3)
|
|
|
|
%% Plot average over all SNR values
|
|
if (length(SNR_values_db) > 1)
|
|
subplot(1,2,1)
|
|
for i=1:Ntests
|
|
plot(SNR_values_db, 10*log10(mean_mse(i,:)),colors{i})
|
|
hold on;
|
|
end
|
|
hold off;
|
|
legend(legends);
|
|
grid on
|
|
xlabel('SNR (dB)')
|
|
ylabel('MSE (dB)')
|
|
|
|
subplot(1,2,2)
|
|
plot(SNR_values_db, SNR_values_db,'k:')
|
|
hold on;
|
|
for i=1:Ntests
|
|
plot(SNR_values_db, mean_snr(i,:), colors{i})
|
|
end
|
|
hold off
|
|
tmp=cell(Ntests+1,1);
|
|
tmp{1}='Theory';
|
|
for i=2:Ntests+1
|
|
tmp{i}=legends{i-1};
|
|
end
|
|
legend(tmp)
|
|
grid on
|
|
xlabel('SNR (dB)')
|
|
ylabel('Estimated SNR (dB)')
|
|
end
|
|
|