You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

338 lines
12 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_PHCH_COMMON_H
#define SRSUE_PHCH_COMMON_H
#include "phy_metrics.h"
#include "srslte/adt/circular_array.h"
#include "srslte/common/gen_mch_tables.h"
#include "srslte/common/log.h"
#include "srslte/common/tti_sempahore.h"
#include "srslte/interfaces/radio_interfaces.h"
#include "srslte/interfaces/ue_interfaces.h"
#include "srslte/radio/radio.h"
#include "srslte/srslog/srslog.h"
#include "srslte/srslte.h"
#include "srsue/hdr/phy/scell/scell_state.h"
#include "ta_control.h"
#include <condition_variable>
#include <mutex>
#include <string.h>
#include <vector>
namespace srsue {
class rsrp_insync_itf
{
public:
virtual void in_sync() = 0;
virtual void out_of_sync() = 0;
virtual void set_cfo(float cfo) = 0;
};
/* Subclass that manages variables common to all workers */
class phy_common
{
public:
/* Common variables used by all phy workers */
phy_args_t* args = nullptr;
stack_interface_phy_lte* stack = nullptr;
srslte::phy_cfg_mbsfn_t mbsfn_config = {};
// Secondary serving cell states
scell::state cell_state;
// Save last TBS for uplink (mcs >= 28)
srslte_ra_tb_t last_ul_tb[SRSLTE_MAX_HARQ_PROC][SRSLTE_MAX_CARRIERS] = {};
// Save last TBS for DL (Format1C)
int last_dl_tbs[SRSLTE_MAX_HARQ_PROC][SRSLTE_MAX_CARRIERS][SRSLTE_MAX_CODEWORDS] = {};
srslte::tti_semaphore<void*> semaphore;
// Time Aligment Controller, internal thread safe
ta_control ta;
phy_common(srslog::basic_logger& logger);
~phy_common();
void init(phy_args_t* args,
srslte::radio_interface_phy* _radio,
stack_interface_phy_lte* _stack,
rsrp_insync_itf* rsrp_insync);
uint32_t ul_pidof(uint32_t tti, srslte_tdd_config_t* tdd_config);
// Set configurations for lib objects
void set_ue_dl_cfg(srslte_ue_dl_cfg_t* ue_dl_cfg);
void set_ue_ul_cfg(srslte_ue_ul_cfg_t* ue_ul_cfg);
void set_pdsch_cfg(srslte_pdsch_cfg_t* pdsch_cfg);
void set_rar_grant(uint8_t grant_payload[SRSLTE_RAR_GRANT_LEN], uint16_t rnti, srslte_tdd_config_t tdd_config);
void set_dl_pending_grant(uint32_t tti, uint32_t cc_idx, uint32_t grant_cc_idx, const srslte_dci_dl_t* dl_dci);
bool get_dl_pending_grant(uint32_t tti, uint32_t cc_idx, uint32_t* grant_cc_idx, srslte_dci_dl_t* dl_dci);
void set_ul_pending_ack(srslte_ul_sf_cfg_t* sf,
uint32_t cc_idx,
srslte_phich_grant_t phich_grant,
srslte_dci_ul_t* dci_ul);
bool get_ul_pending_ack(srslte_dl_sf_cfg_t* sf,
uint32_t cc_idx,
srslte_phich_grant_t* phich_grant,
srslte_dci_ul_t* dci_ul);
bool is_any_ul_pending_ack();
bool get_ul_received_ack(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, bool* ack_value, srslte_dci_ul_t* dci_ul);
void set_ul_received_ack(srslte_dl_sf_cfg_t* sf,
uint32_t cc_idx,
bool ack_value,
uint32_t I_phich,
srslte_dci_ul_t* dci_ul);
void set_ul_pending_grant(srslte_dl_sf_cfg_t* sf, uint32_t cc_idx, srslte_dci_ul_t* dci);
bool get_ul_pending_grant(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, uint32_t* pid, srslte_dci_ul_t* dci);
/**
* If there is a UL Grant it returns the lowest index component carrier that has a grant, otherwise it returns 0.
*
* @param tti_tx TTI in which the transmission is happening
* @return The number of carrier if a grant is available, otherwise 0
*/
uint32_t get_ul_uci_cc(uint32_t tti_tx) const;
void set_rar_grant_tti(uint32_t tti);
void set_dl_pending_ack(srslte_dl_sf_cfg_t* sf,
uint32_t cc_idx,
uint8_t value[SRSLTE_MAX_CODEWORDS],
srslte_pdsch_ack_resource_t resource);
bool get_dl_pending_ack(srslte_ul_sf_cfg_t* sf, uint32_t cc_idx, srslte_pdsch_ack_cc_t* ack);
void worker_end(void* h, bool tx_enable, srslte::rf_buffer_t& buffer, srslte::rf_timestamp_t& tx_time, bool is_nr);
void set_cell(const srslte_cell_t& c);
bool sr_enabled = false;
int sr_last_tx_tti = -1;
srslte::radio_interface_phy* get_radio();
void set_dl_metrics(uint32_t cc_idx, const dl_metrics_t& m);
void get_dl_metrics(dl_metrics_t m[SRSLTE_MAX_CARRIERS]);
void set_ch_metrics(uint32_t cc_idx, const ch_metrics_t& m);
void get_ch_metrics(ch_metrics_t m[SRSLTE_MAX_CARRIERS]);
void set_ul_metrics(uint32_t cc_idx, const ul_metrics_t& m);
void get_ul_metrics(ul_metrics_t m[SRSLTE_MAX_CARRIERS]);
void set_sync_metrics(const uint32_t& cc_idx, const sync_metrics_t& m);
void get_sync_metrics(sync_metrics_t m[SRSLTE_MAX_CARRIERS]);
void reset();
void reset_radio();
void build_mch_table();
void build_mcch_table();
void set_mcch();
bool is_mbsfn_sf(srslte_mbsfn_cfg_t* cfg, uint32_t tti);
void set_mch_period_stop(uint32_t stop);
/**
* Deduces the UL EARFCN from a DL EARFCN. If the UL-EARFCN was defined in the UE PHY arguments it will use the
* corresponding UL-EARFCN to the DL-EARFCN. Otherwise, it will use default.
*
* @param dl_earfcn
* @return the deduced UL EARFCN
*/
uint32_t get_ul_earfcn(uint32_t dl_earfcn);
void update_measurements(uint32_t cc_idx,
srslte_chest_dl_res_t chest_res,
srslte_dl_sf_cfg_t sf_cfg_dl,
float tx_crs_power,
std::vector<phy_meas_t>& serving_cells,
cf_t* rssi_power_buffer = nullptr);
void update_cfo_measurement(uint32_t cc_idx, float cfo_hz);
float get_sinr_db(uint32_t cc_idx)
{
std::unique_lock<std::mutex> lock(meas_mutex);
return avg_sinr_db[cc_idx];
}
float get_pusch_power()
{
std::unique_lock<std::mutex> lock(meas_mutex);
return cur_pusch_power;
}
float get_pathloss()
{
std::unique_lock<std::mutex> lock(meas_mutex);
return cur_pathloss;
}
float get_rx_gain_offset()
{
std::unique_lock<std::mutex> lock(meas_mutex);
return rx_gain_offset;
}
void neighbour_cells_reset(uint32_t cc_idx) { avg_rsrp_neigh[cc_idx] = NAN; }
void set_neighbour_cells(uint32_t cc_idx, const std::vector<phy_meas_t>& meas)
{
// Add RSRP in the linear domain and average
float total_rsrp = 0;
for (auto& m : meas) {
total_rsrp += srslte_convert_dB_to_power(m.rsrp);
}
if (std::isnormal(total_rsrp)) {
if (std::isnormal(avg_rsrp_neigh[cc_idx])) {
avg_rsrp_neigh[cc_idx] = SRSLTE_VEC_EMA(total_rsrp, avg_rsrp_neigh[cc_idx], 0.9);
} else {
avg_rsrp_neigh[cc_idx] = total_rsrp;
}
}
}
void reset_neighbour_cells()
{
for (uint32_t i = 0; i < SRSLTE_MAX_CARRIERS; i++) {
avg_rsrp_neigh[i] = NAN;
}
}
private:
std::mutex meas_mutex;
float pathloss[SRSLTE_MAX_CARRIERS] = {};
float cur_pathloss = 0.0f;
float cur_pusch_power = 0.0f;
float avg_rsrp[SRSLTE_MAX_CARRIERS] = {};
float avg_rsrp_dbm[SRSLTE_MAX_CARRIERS] = {};
float avg_rsrq_db[SRSLTE_MAX_CARRIERS] = {};
float avg_rssi_dbm[SRSLTE_MAX_CARRIERS] = {};
float avg_cfo_hz[SRSLTE_MAX_CARRIERS] = {};
float rx_gain_offset = 0.0f;
float avg_sinr_db[SRSLTE_MAX_CARRIERS] = {};
float avg_snr_db[SRSLTE_MAX_CARRIERS] = {};
float avg_noise[SRSLTE_MAX_CARRIERS] = {};
float avg_rsrp_neigh[SRSLTE_MAX_CARRIERS] = {};
uint32_t pcell_report_period = 0;
uint32_t rssi_read_cnt = 0;
rsrp_insync_itf* insync_itf = nullptr;
bool have_mtch_stop = false;
std::mutex mtch_mutex;
std::condition_variable mtch_cvar;
bool is_pending_tx_end = false;
srslte::radio_interface_phy* radio_h = nullptr;
srslog::basic_logger& logger;
srslte::channel_ptr ul_channel = nullptr;
int rar_grant_tti = -1;
typedef struct {
bool enable;
srslte_phich_grant_t phich_grant;
srslte_dci_ul_t dci_ul;
} pending_ul_ack_t;
srslte::circular_array<pending_ul_ack_t, TTIMOD_SZ> pending_ul_ack[SRSLTE_MAX_CARRIERS][2] = {};
std::mutex pending_ul_ack_mutex;
typedef struct {
bool hi_value;
bool hi_present;
srslte_dci_ul_t dci_ul;
} received_ul_ack_t;
srslte::circular_array<received_ul_ack_t, TTIMOD_SZ> received_ul_ack[SRSLTE_MAX_CARRIERS] = {};
std::mutex received_ul_ack_mutex;
typedef struct {
bool enable;
uint32_t pid;
srslte_dci_ul_t dci;
} pending_ul_grant_t;
srslte::circular_array<pending_ul_grant_t, TTIMOD_SZ> pending_ul_grant[SRSLTE_MAX_CARRIERS] = {};
mutable std::mutex pending_ul_grant_mutex;
typedef struct {
bool enable;
uint8_t value[SRSLTE_MAX_CODEWORDS]; // 0/1 or 2 for DTX
srslte_pdsch_ack_resource_t resource;
} received_ack_t;
srslte::circular_array<received_ack_t, TTIMOD_SZ> pending_dl_ack[SRSLTE_MAX_CARRIERS] = {};
srslte::circular_array<uint32_t, TTIMOD_SZ> pending_dl_dai[SRSLTE_MAX_CARRIERS] = {};
std::mutex pending_dl_ack_mutex;
std::mutex pending_dl_grant_mutex;
// Cross-carried grants scheduled from PCell
typedef struct {
bool enable;
uint32_t grant_cc_idx;
srslte_dci_dl_t dl_dci;
} pending_dl_grant_t;
pending_dl_grant_t pending_dl_grant[FDD_HARQ_DELAY_UL_MS][SRSLTE_MAX_CARRIERS] = {};
srslte_cell_t cell = {};
std::mutex metrics_mutex;
ch_metrics_t ch_metrics[SRSLTE_MAX_CARRIERS] = {};
uint32_t ch_metrics_count[SRSLTE_MAX_CARRIERS] = {};
dl_metrics_t dl_metrics[SRSLTE_MAX_CARRIERS] = {};
uint32_t dl_metrics_count[SRSLTE_MAX_CARRIERS] = {};
ul_metrics_t ul_metrics[SRSLTE_MAX_CARRIERS] = {};
uint32_t ul_metrics_count[SRSLTE_MAX_CARRIERS] = {};
sync_metrics_t sync_metrics[SRSLTE_MAX_CARRIERS] = {};
uint32_t sync_metrics_count[SRSLTE_MAX_CARRIERS] = {};
// MBSFN
bool sib13_configured = false;
bool mcch_configured = false;
uint32_t mch_period_stop = 0;
uint8_t mch_table[40] = {};
uint8_t mcch_table[10] = {};
bool is_mch_subframe(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti);
bool is_mcch_subframe(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti);
// NR carriers buffering synchronization, LTE workers are in charge of transmitting
srslte::rf_buffer_t nr_tx_buffer;
bool nr_tx_buffer_ready = false;
};
} // namespace srsue
#endif // SRSUE_PDCH_COMMON_H