You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/rlc/rlc_am_nr_test.cc

612 lines
21 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#include "rlc_test_common.h"
#include "srsran/common/buffer_pool.h"
#include "srsran/common/rlc_pcap.h"
#include "srsran/common/test_common.h"
#include "srsran/common/threads.h"
#include "srsran/interfaces/ue_pdcp_interfaces.h"
#include "srsran/interfaces/ue_rrc_interfaces.h"
#include "srsran/rlc/rlc_am_nr.h"
#define NBUFS 5
#define HAVE_PCAP 0
#define SDU_SIZE 500
using namespace srsue;
using namespace srsran;
int basic_test_tx(rlc_am* rlc, byte_buffer_t pdu_bufs[NBUFS])
{
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc->write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(15 == rlc->get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
// Read 5 PDUs from RLC1 (1 byte each)
for (int i = 0; i < NBUFS; i++) {
uint32_t len = rlc->read_pdu(pdu_bufs[i].msg, 3); // 2 bytes for header + 1 byte payload
pdu_bufs[i].N_bytes = len;
TESTASSERT_EQ(3, len);
}
TESTASSERT(0 == rlc->get_buffer_state());
return SRSRAN_SUCCESS;
}
/*
* Test the limits of the TX/RX window checkers
*
* This will test
*/
int window_checker_test()
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("window checkers");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am_nr_tx* tx = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
return SRSRAN_ERROR;
}
{
// RLC1 RX_NEXT == 0 and RLC2 TX_NEXT_ACK == 0
uint32_t sn_inside_below = 0;
uint32_t sn_inside_above = 2047;
uint32_t sn_outside_below = 4095;
uint32_t sn_outside_above = 2048;
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_below));
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_above));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_below));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_above));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_below));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_above));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_below));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_above));
}
rlc_am_nr_rx_state_t rx_st = {};
rx_st.rx_next = 4095;
rlc_am_nr_tx_state_t tx_st = {};
tx_st.tx_next_ack = 4095;
rx->set_rx_state(rx_st);
tx->set_tx_state(tx_st);
{
// RX_NEXT == 4095 TX_NEXT_ACK == 4095
uint32_t sn_inside_below = 0;
uint32_t sn_inside_above = 2046;
uint32_t sn_outside_below = 4094;
uint32_t sn_outside_above = 2048;
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_below));
TESTASSERT_EQ(true, rx->inside_rx_window(sn_inside_above));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_below));
TESTASSERT_EQ(false, rx->inside_rx_window(sn_outside_above));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_below));
TESTASSERT_EQ(true, tx->inside_tx_window(sn_inside_above));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_below));
TESTASSERT_EQ(false, tx->inside_tx_window(sn_outside_above));
}
return SRSRAN_SUCCESS;
}
/*
* Test the transmission and acknowledgement of 5 SDUs.
*
* Each SDU is transmitted as a single PDU.
* There are no lost PDUs, and the byte size is small, so the Poll_PDU configuration
* will trigger the status report.
* Poll PDU is configured to 4, so the 5th PDU should set the polling bit.
*/
int basic_test()
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("basic tx/rx");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
rlc_am_nr_tx* tx1 = dynamic_cast<rlc_am_nr_tx*>(rlc1.get_tx());
rlc_am_nr_rx* rx1 = dynamic_cast<rlc_am_nr_rx*>(rlc1.get_rx());
rlc_am_nr_tx* tx2 = dynamic_cast<rlc_am_nr_tx*>(rlc2.get_tx());
rlc_am_nr_rx* rx2 = dynamic_cast<rlc_am_nr_rx*>(rlc2.get_rx());
// before configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
basic_test_tx(&rlc1, pdu_bufs);
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
TESTASSERT(3 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 3);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
TESTASSERT(status_check.ack_sn == 5); // 5 is the last SN that was not received.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check TX_NEXT_ACK
rlc_am_nr_tx_state_t st = tx1->get_tx_state();
TESTASSERT_EQ(5, st.tx_next_ack);
TESTASSERT_EQ(0, tx1->get_tx_window_size());
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
// RLC1 PDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(5, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// RLC1 SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_pdus);
TESTASSERT_EQ(1, metrics1.num_rx_pdus); // One status PDU
TESTASSERT_EQ(15, metrics1.num_tx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
TESTASSERT_EQ(3, metrics1.num_rx_pdu_bytes); // One status PDU
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// RLC2 PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// RLC2 SDU metrics
TESTASSERT_EQ(1, metrics2.num_tx_pdus); // One status PDU
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 SDUs
TESTASSERT_EQ(3, metrics2.num_tx_pdu_bytes); // One status PDU
TESTASSERT_EQ(15, metrics2.num_rx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
return SRSRAN_SUCCESS;
}
/*
* Test the loss of a single PDU.
* NACK should be visible in the status report.
* Retx after NACK should be present too.
*/
int lost_pdu_test()
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
test_delimit_logger delimiter("lost PDU");
// before configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
basic_test_tx(&rlc1, pdu_bufs);
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
if (i != 3) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); // Don't write RLC_SN=3.
}
}
// Only after t-reassembly has expired, will the status report include NACKs.
TESTASSERT(3 == rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
TESTASSERT(status_check.ack_sn == 3); // 3 is the next expected SN (i.e. the lost packet.)
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
// Step timers until reassambly timeout expires
for (int cnt = 0; cnt < 35; cnt++) {
timers.step_all();
}
// t-reassembly has expired. There should be a NACK in the status report.
TESTASSERT(5 == rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
TESTASSERT(status_check.ack_sn == 5); // 5 is the next expected SN.
TESTASSERT(status_check.N_nack == 1); // We lost one PDU.
TESTASSERT(status_check.nacks[0].nack_sn == 3); // Lost PDU SN=3.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check there is an Retx of SN=3
TESTASSERT(3 == rlc1.get_buffer_state());
}
{
// Check correct re-transmission
byte_buffer_t retx_buf;
int len = rlc1.read_pdu(retx_buf.msg, 3);
retx_buf.N_bytes = len;
TESTASSERT(3 == len);
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
TESTASSERT(0 == rlc2.get_buffer_state());
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
// SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(5, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(5 + 1, metrics1.num_tx_pdus); // One re-transmission
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // One status PDU
TESTASSERT_EQ(18, metrics1.num_tx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) + 1 rext (3) = 18
TESTASSERT_EQ(3 + 5, metrics1.num_rx_pdu_bytes); // Two status PDU (one with a NACK)
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// SDU metrics
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 PDUs (6 tx'ed, but one was lost)
TESTASSERT_EQ(5 + 3, metrics2.num_tx_pdu_bytes); // Two status PDU (one with a NACK)
TESTASSERT_EQ(15, metrics2.num_rx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
return SRSRAN_SUCCESS;
}
/*
* Test the basic segmentation of a single SDU.
* A single SDU of 3 bytes is segmented into 3 PDUs
*/
int basic_segmentation_test()
{
rlc_am_tester tester;
timer_handler timers(8);
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
test_delimit_logger delimiter("basic segmentation");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
// before configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
// Push 1 SDU into RLC1
unique_byte_buffer_t sdu;
sdu = srsran::make_byte_buffer();
TESTASSERT(nullptr != sdu);
sdu->msg[0] = 0; // Write the index into the buffer
sdu->N_bytes = 3; // Give the SDU the size of 3 bytes
sdu->md.pdcp_sn = 0; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu));
// Read 3 PDUs
constexpr uint16_t n_pdus = 3;
unique_byte_buffer_t pdu_bufs[n_pdus];
for (int i = 0; i < 3; i++) {
pdu_bufs[i] = srsran::make_byte_buffer();
TESTASSERT(nullptr != pdu_bufs[i]);
if (i == 0) {
pdu_bufs[i]->N_bytes = rlc1.read_pdu(pdu_bufs[i]->msg, 3);
TESTASSERT_EQ(3, pdu_bufs[i]->N_bytes);
} else {
pdu_bufs[i]->N_bytes = rlc1.read_pdu(pdu_bufs[i]->msg, 5);
TESTASSERT_EQ(5, pdu_bufs[i]->N_bytes);
}
}
// Write 5 PDUs into RLC2
for (int i = 0; i < n_pdus; i++) {
rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); // Don't write RLC_SN=3.
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
// SDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(1, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(3, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_pdus);
TESTASSERT_EQ(3, metrics2.num_rx_pdus); // 5 PDUs (6 tx'ed, but one was lost)
TESTASSERT_EQ(0, metrics2.num_tx_pdu_bytes); // Two status PDU (one with a NACK)
TESTASSERT_EQ(13, metrics2.num_rx_pdu_bytes); // 1 PDU (No SO) + 2 PDUs (with SO) = 3 + 2*5
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
return SRSRAN_SUCCESS;
}
int segment_retx_test()
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
auto& test_logger = srslog::fetch_basic_logger("TESTER ");
rlc_am rlc1(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::nr, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
test_delimit_logger delimiter("segment retx PDU");
// before configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
if (not rlc1.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_nr_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 3; // Give each buffer a size of 3 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(25 == rlc1.get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) = 25
// Read 5 PDUs from RLC1 (1 byte each)
for (int i = 0; i < NBUFS; i++) {
uint32_t len = rlc1.read_pdu(pdu_bufs[i].msg, 5); // 2 bytes for header + 3 byte payload
pdu_bufs[i].N_bytes = len;
TESTASSERT_EQ(5, len);
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
if (i != 3) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes); // Don't write RLC_SN=3.
}
}
// Only after t-reassembly has expired, will the status report include NACKs.
TESTASSERT(3 == rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
TESTASSERT(status_check.ack_sn == 3); // 3 is the next expected SN (i.e. the lost packet.)
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
// Step timers until reassambly timeout expires
for (int cnt = 0; cnt < 35; cnt++) {
timers.step_all();
}
// t-reassembly has expired. There should be a NACK in the status report.
TESTASSERT(5 == rlc2.get_buffer_state());
{
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 5);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_am_nr_status_pdu_t status_check = {};
rlc_am_nr_read_status_pdu(&status_buf, rlc_am_nr_sn_size_t::size12bits, &status_check);
TESTASSERT(status_check.ack_sn == 5); // 5 is the next expected SN.
TESTASSERT(status_check.N_nack == 1); // We lost one PDU.
TESTASSERT(status_check.nacks[0].nack_sn == 3); // Lost PDU SN=3.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check there is an Retx of SN=3
TESTASSERT(5 == rlc1.get_buffer_state());
}
{
// Re-transmit PDU in 3 segments
for (int i = 0; i < 3; i++) {
byte_buffer_t retx_buf;
uint32_t len = 0;
test_logger.info("Looping!!! i=%d", i);
test_logger.info("Looping!!! i=%d", i);
test_logger.info("Looping!!! i=%d", i);
test_logger.info("Looping!!! i=%d", i);
if (i == 0) {
len = rlc1.read_pdu(retx_buf.msg, 3);
TESTASSERT(3 == len);
} else {
len = rlc1.read_pdu(retx_buf.msg, 5);
TESTASSERT(5 == len);
}
retx_buf.N_bytes = len;
rlc_am_nr_pdu_header_t header_check = {};
uint32_t hdr_len = rlc_am_nr_read_data_pdu_header(&retx_buf, rlc_am_nr_sn_size_t::size12bits, &header_check);
// Double check header.
TESTASSERT(header_check.sn == 3); // Double check RETX SN
if (i == 0) {
TESTASSERT(header_check.si == rlc_nr_si_field_t::first_segment);
} else if (i == 1) {
TESTASSERT(header_check.si == rlc_nr_si_field_t::neither_first_nor_last_segment);
} else {
TESTASSERT(header_check.si == rlc_nr_si_field_t::last_segment);
}
rlc2.write_pdu(retx_buf.msg, retx_buf.N_bytes);
}
TESTASSERT(0 == rlc1.get_buffer_state());
}
// Check statistics
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
// SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus);
TESTASSERT_EQ(15, metrics1.num_tx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics1.num_lost_sdus);
// PDU metrics
TESTASSERT_EQ(5 + 3, metrics1.num_tx_pdus); // 3 re-transmissions
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU
TESTASSERT_EQ(18,
metrics1.num_tx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) + 3 rext (3 * 3) = 34
TESTASSERT_EQ(3 + 5, metrics1.num_rx_pdu_bytes); // Two status PDU (one with a NACK)
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// PDU metrics
TESTASSERT_EQ(0, metrics2.num_tx_sdus);
TESTASSERT_EQ(5, metrics2.num_rx_sdus);
TESTASSERT_EQ(0, metrics2.num_tx_sdu_bytes);
TESTASSERT_EQ(5, metrics2.num_rx_sdu_bytes);
TESTASSERT_EQ(0, metrics2.num_lost_sdus);
// SDU metrics
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
TESTASSERT_EQ(5, metrics2.num_rx_pdus); // 5 PDUs (6 tx'ed, but one was lost)
TESTASSERT_EQ(5 + 3, metrics2.num_tx_pdu_bytes); // Two status PDU (one with a NACK)
TESTASSERT_EQ(15, metrics2.num_rx_pdu_bytes); // 2 Bytes * NBUFFS (header size) + NBUFFS (data) = 15
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
return SRSRAN_SUCCESS;
}
int main()
{
// Setup the log message spy to intercept error and warning log entries from RLC
if (!srslog::install_custom_sink(srsran::log_sink_message_spy::name(),
std::unique_ptr<srsran::log_sink_message_spy>(
new srsran::log_sink_message_spy(srslog::get_default_log_formatter())))) {
return SRSRAN_ERROR;
}
auto* spy = static_cast<srsran::log_sink_message_spy*>(srslog::find_sink(srsran::log_sink_message_spy::name()));
if (spy == nullptr) {
return SRSRAN_ERROR;
}
srslog::set_default_sink(*spy);
auto& logger_rlc1 = srslog::fetch_basic_logger("RLC_AM_1", *spy, false);
auto& logger_rlc2 = srslog::fetch_basic_logger("RLC_AM_2", *spy, false);
logger_rlc1.set_hex_dump_max_size(100);
logger_rlc2.set_hex_dump_max_size(100);
logger_rlc1.set_level(srslog::basic_levels::debug);
logger_rlc2.set_level(srslog::basic_levels::debug);
// start log back-end
srslog::init();
TESTASSERT(window_checker_test() == SRSRAN_SUCCESS);
TESTASSERT(basic_test() == SRSRAN_SUCCESS);
TESTASSERT(lost_pdu_test() == SRSRAN_SUCCESS);
TESTASSERT(basic_segmentation_test() == SRSRAN_SUCCESS);
TESTASSERT(segment_retx_test() == SRSRAN_SUCCESS);
return SRSRAN_SUCCESS;
}