You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

726 lines
21 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsepc/hdr/hss/hss.h"
#include "srslte/common/security.h"
#include <inttypes.h> // for printing uint64_t
#include <iomanip>
#include <sstream>
#include <stdlib.h> /* srand, rand */
#include <string>
#include <time.h>
namespace srsepc {
hss* hss::m_instance = NULL;
pthread_mutex_t hss_instance_mutex = PTHREAD_MUTEX_INITIALIZER;
hss::hss()
{
return;
}
hss::~hss()
{
return;
}
hss* hss::get_instance()
{
pthread_mutex_lock(&hss_instance_mutex);
if (NULL == m_instance) {
m_instance = new hss();
}
pthread_mutex_unlock(&hss_instance_mutex);
return (m_instance);
}
void hss::cleanup()
{
pthread_mutex_lock(&hss_instance_mutex);
if (NULL != m_instance) {
delete m_instance;
m_instance = NULL;
}
pthread_mutex_unlock(&hss_instance_mutex);
}
int hss::init(hss_args_t* hss_args, srslte::log_filter* hss_log)
{
srand(time(NULL));
/*Init loggers*/
m_hss_log = hss_log;
/*Read user information from DB*/
if (read_db_file(hss_args->db_file) == false) {
m_hss_log->console("Error reading user database file %s\n", hss_args->db_file.c_str());
return -1;
}
mcc = hss_args->mcc;
mnc = hss_args->mnc;
db_file = hss_args->db_file;
m_hss_log->info("HSS Initialized. DB file %s, MCC: %d, MNC: %d\n", hss_args->db_file.c_str(), mcc, mnc);
m_hss_log->console("HSS Initialized.\n");
return 0;
}
void hss::stop()
{
write_db_file(db_file);
std::map<uint64_t, hss_ue_ctx_t*>::iterator it = m_imsi_to_ue_ctx.begin();
while (it != m_imsi_to_ue_ctx.end()) {
m_hss_log->info("Deleting UE context in HSS. IMSI: %015" PRIu64 "\n", it->second->imsi);
m_hss_log->console("Deleting UE context in HSS. IMSI: %015" PRIu64 "\n", it->second->imsi);
delete it->second;
m_imsi_to_ue_ctx.erase(it++);
}
return;
}
bool hss::read_db_file(std::string db_filename)
{
std::ifstream m_db_file;
m_db_file.open(db_filename.c_str(), std::ifstream::in);
if (!m_db_file.is_open()) {
return false;
}
m_hss_log->info("Opened DB file: %s\n", db_filename.c_str());
std::string line;
while (std::getline(m_db_file, line)) {
if (line[0] != '#' && line.length() > 0) {
uint column_size = 10;
std::vector<std::string> split = split_string(line, ',');
if (split.size() != column_size) {
m_hss_log->error("Error parsing UE database. Wrong number of columns in .csv\n");
m_hss_log->error("Columns: %zd, Expected %d.\n", split.size(), column_size);
m_hss_log->console("\nError parsing UE database. Wrong number of columns in user database CSV.\n");
m_hss_log->console("Perhaps you are using an old user_db.csv?\n");
m_hss_log->console("See 'srsepc/user_db.csv.example' for an example.\n\n");
return false;
}
hss_ue_ctx_t* ue_ctx = new hss_ue_ctx_t;
ue_ctx->name = split[0];
if (split[1] == std::string("xor")) {
ue_ctx->algo = HSS_ALGO_XOR;
} else if (split[1] == std::string("mil")) {
ue_ctx->algo = HSS_ALGO_MILENAGE;
} else {
m_hss_log->error("Neither XOR nor MILENAGE configured.\n");
return false;
}
ue_ctx->imsi = strtoull(split[2].c_str(), nullptr, 10);
get_uint_vec_from_hex_str(split[3], ue_ctx->key, 16);
if (split[4] == std::string("op")) {
ue_ctx->op_configured = true;
get_uint_vec_from_hex_str(split[5], ue_ctx->op, 16);
srslte::compute_opc(ue_ctx->key, ue_ctx->op, ue_ctx->opc);
} else if (split[4] == std::string("opc")) {
ue_ctx->op_configured = false;
get_uint_vec_from_hex_str(split[5], ue_ctx->opc, 16);
} else {
m_hss_log->error("Neither OP nor OPc configured.\n");
return false;
}
get_uint_vec_from_hex_str(split[6], ue_ctx->amf, 2);
get_uint_vec_from_hex_str(split[7], ue_ctx->sqn, 6);
m_hss_log->debug("Added user from DB, IMSI: %015" PRIu64 "\n", ue_ctx->imsi);
m_hss_log->debug_hex(ue_ctx->key, 16, "User Key : ");
if (ue_ctx->op_configured) {
m_hss_log->debug_hex(ue_ctx->op, 16, "User OP : ");
}
m_hss_log->debug_hex(ue_ctx->opc, 16, "User OPc : ");
m_hss_log->debug_hex(ue_ctx->amf, 2, "AMF : ");
m_hss_log->debug_hex(ue_ctx->sqn, 6, "SQN : ");
ue_ctx->qci = (uint16_t)strtol(split[8].c_str(), nullptr, 10);
m_hss_log->debug("Default Bearer QCI: %d\n", ue_ctx->qci);
if (split[9] == std::string("dynamic")) {
ue_ctx->static_ip_addr = "0.0.0.0";
} else {
char buf[128] = {0};
if (inet_pton(AF_INET, split[9].c_str(), buf)) {
if (m_ip_to_imsi.insert(std::make_pair(split[9], ue_ctx->imsi)).second) {
ue_ctx->static_ip_addr = split[9];
m_hss_log->info("static ip addr %s\n", ue_ctx->static_ip_addr.c_str());
} else {
m_hss_log->info("duplicate static ip addr %s\n", split[9].c_str());
return false;
}
} else {
m_hss_log->info("invalid static ip addr %s, %s\n", split[9].c_str(), strerror(errno));
return false;
}
}
m_imsi_to_ue_ctx.insert(std::pair<uint64_t, hss_ue_ctx_t*>(ue_ctx->imsi, ue_ctx));
}
}
if (m_db_file.is_open()) {
m_db_file.close();
}
return true;
}
bool hss::write_db_file(std::string db_filename)
{
std::string line;
uint8_t k[16];
uint8_t amf[2];
uint8_t op[16];
uint8_t sqn[6];
std::ofstream m_db_file;
m_db_file.open(db_filename.c_str(), std::ofstream::out);
if (!m_db_file.is_open()) {
return false;
}
m_hss_log->info("Opened DB file: %s\n", db_filename.c_str());
// Write comment info
m_db_file << "# \n"
<< "# .csv to store UE's information in HSS \n"
<< "# Kept in the following format: \"Name,Auth,IMSI,Key,OP_Type,OP,AMF,SQN,QCI,IP_alloc\" \n"
<< "# \n"
<< "# Name: Human readable name to help distinguish UE's. Ignored by the HSS \n"
<< "# IMSI: UE's IMSI value \n"
<< "# Auth: Authentication algorithm used by the UE. Valid algorithms are XOR \n"
<< "# (xor) and MILENAGE (mil) \n"
<< "# Key: UE's key, where other keys are derived from. Stored in hexadecimal \n"
<< "# OP_Type: Operator's code type, either OP or OPc \n"
<< "# OP/OPc: Operator Code/Cyphered Operator Code, stored in hexadecimal \n"
<< "# AMF: Authentication management field, stored in hexadecimal \n"
<< "# SQN: UE's Sequence number for freshness of the authentication \n"
<< "# QCI: QoS Class Identifier for the UE's default bearer. \n"
<< "# IP_alloc: IP allocation stratagy for the SPGW. \n"
<< "# With 'dynamic' the SPGW will automatically allocate IPs \n"
<< "# With a valid IPv4 (e.g. '172.16.0.2') the UE will have a statically assigned IP.\n"
<< "# \n"
<< "# Note: Lines starting by '#' are ignored and will be overwritten \n";
std::map<uint64_t, hss_ue_ctx_t*>::iterator it = m_imsi_to_ue_ctx.begin();
while (it != m_imsi_to_ue_ctx.end()) {
m_db_file << it->second->name;
m_db_file << ",";
m_db_file << (it->second->algo == HSS_ALGO_XOR ? "xor" : "mil");
m_db_file << ",";
m_db_file << std::setfill('0') << std::setw(15) << it->second->imsi;
m_db_file << ",";
m_db_file << hex_string(it->second->key, 16);
m_db_file << ",";
if (it->second->op_configured) {
m_db_file << "op,";
m_db_file << hex_string(it->second->op, 16);
} else {
m_db_file << "opc,";
m_db_file << hex_string(it->second->opc, 16);
}
m_db_file << ",";
m_db_file << hex_string(it->second->amf, 2);
m_db_file << ",";
m_db_file << hex_string(it->second->sqn, 6);
m_db_file << ",";
m_db_file << it->second->qci;
if (it->second->static_ip_addr != "0.0.0.0") {
m_db_file << ",";
m_db_file << it->second->static_ip_addr;
} else {
m_db_file << ",dynamic";
}
m_db_file << std::endl;
it++;
}
if (m_db_file.is_open()) {
m_db_file.close();
}
return true;
}
bool hss::gen_auth_info_answer(uint64_t imsi, uint8_t* k_asme, uint8_t* autn, uint8_t* rand, uint8_t* xres)
{
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
m_hss_log->console("User not found at HSS. IMSI: %015" PRIu64 "\n", imsi);
m_hss_log->error("User not found at HSS. IMSI: %015" PRIu64 "\n", imsi);
return false;
}
switch (ue_ctx->algo) {
case HSS_ALGO_XOR:
ret = gen_auth_info_answer_xor(imsi, k_asme, autn, rand, xres);
break;
case HSS_ALGO_MILENAGE:
ret = gen_auth_info_answer_milenage(imsi, k_asme, autn, rand, xres);
break;
}
increment_ue_sqn(imsi);
return ret;
}
bool hss::gen_auth_info_answer_milenage(uint64_t imsi, uint8_t* k_asme, uint8_t* autn, uint8_t* rand, uint8_t* xres)
{
uint8_t k[16];
uint8_t amf[2];
uint8_t opc[16];
uint8_t sqn[6];
uint8_t ck[16];
uint8_t ik[16];
uint8_t ak[6];
uint8_t mac[8];
if (!get_k_amf_opc_sqn(imsi, k, amf, opc, sqn)) {
return false;
}
gen_rand(rand);
srslte::security_milenage_f2345(k, opc, rand, xres, ck, ik, ak);
m_hss_log->debug_hex(k, 16, "User Key : ");
m_hss_log->debug_hex(opc, 16, "User OPc : ");
m_hss_log->debug_hex(rand, 16, "User Rand : ");
m_hss_log->debug_hex(xres, 8, "User XRES: ");
m_hss_log->debug_hex(ck, 16, "User CK: ");
m_hss_log->debug_hex(ik, 16, "User IK: ");
m_hss_log->debug_hex(ak, 6, "User AK: ");
srslte::security_milenage_f1(k, opc, rand, sqn, amf, mac);
m_hss_log->debug_hex(sqn, 6, "User SQN : ");
m_hss_log->debug_hex(mac, 8, "User MAC : ");
// Generate K_asme
srslte::security_generate_k_asme(ck, ik, ak, sqn, mcc, mnc, k_asme);
m_hss_log->debug("User MCC : %x MNC : %x \n", mcc, mnc);
m_hss_log->debug_hex(k_asme, 32, "User k_asme : ");
// Generate AUTN (autn = sqn ^ ak |+| amf |+| mac)
for (int i = 0; i < 6; i++) {
autn[i] = sqn[i] ^ ak[i];
}
for (int i = 0; i < 2; i++) {
autn[6 + i] = amf[i];
}
for (int i = 0; i < 8; i++) {
autn[8 + i] = mac[i];
}
m_hss_log->debug_hex(autn, 16, "User AUTN: ");
set_last_rand(imsi, rand);
return true;
}
bool hss::gen_auth_info_answer_xor(uint64_t imsi, uint8_t* k_asme, uint8_t* autn, uint8_t* rand, uint8_t* xres)
{
uint8_t k[16];
uint8_t amf[2];
uint8_t opc[16];
uint8_t sqn[6];
uint8_t xdout[16];
uint8_t cdout[8];
uint8_t ck[16];
uint8_t ik[16];
uint8_t ak[6];
uint8_t mac[8];
int i = 0;
if (!get_k_amf_opc_sqn(imsi, k, amf, opc, sqn)) {
return false;
}
gen_rand(rand);
// Use RAND and K to compute RES, CK, IK and AK
for (i = 0; i < 16; i++) {
xdout[i] = k[i] ^ rand[i];
}
for (i = 0; i < 16; i++) {
xres[i] = xdout[i];
ck[i] = xdout[(i + 1) % 16];
ik[i] = xdout[(i + 2) % 16];
}
for (i = 0; i < 6; i++) {
ak[i] = xdout[i + 3];
}
m_hss_log->debug_hex(k, 16, "User Key : ");
m_hss_log->debug_hex(opc, 16, "User OPc : ");
m_hss_log->debug_hex(rand, 16, "User Rand : ");
m_hss_log->debug_hex(xres, 8, "User XRES: ");
m_hss_log->debug_hex(ck, 16, "User CK: ");
m_hss_log->debug_hex(ik, 16, "User IK: ");
m_hss_log->debug_hex(ak, 6, "User AK: ");
// Generate cdout
for (i = 0; i < 6; i++) {
cdout[i] = sqn[i];
}
for (i = 0; i < 2; i++) {
cdout[6 + i] = amf[i];
}
// Generate MAC
for (i = 0; i < 8; i++) {
mac[i] = xdout[i] ^ cdout[i];
}
m_hss_log->debug_hex(sqn, 6, "User SQN : ");
m_hss_log->debug_hex(mac, 8, "User MAC : ");
// Generate AUTN (autn = sqn ^ ak |+| amf |+| mac)
for (int i = 0; i < 6; i++) {
autn[i] = sqn[i] ^ ak[i];
}
for (int i = 0; i < 2; i++) {
autn[6 + i] = amf[i];
}
for (int i = 0; i < 8; i++) {
autn[8 + i] = mac[i];
}
// Generate K_asme
srslte::security_generate_k_asme(ck, ik, ak, sqn, mcc, mnc, k_asme);
m_hss_log->debug("User MCC : %x MNC : %x \n", mcc, mnc);
m_hss_log->debug_hex(k_asme, 32, "User k_asme : ");
// Generate AUTN (autn = sqn ^ ak |+| amf |+| mac)
for (int i = 0; i < 6; i++) {
autn[i] = sqn[i] ^ ak[i];
}
for (int i = 0; i < 2; i++) {
autn[6 + i] = amf[i];
}
for (int i = 0; i < 8; i++) {
autn[8 + i] = mac[i];
}
m_hss_log->debug_hex(autn, 8, "User AUTN: ");
set_last_rand(imsi, rand);
return true;
}
bool hss::gen_update_loc_answer(uint64_t imsi, uint8_t* qci)
{
std::map<uint64_t, hss_ue_ctx_t*>::iterator ue_ctx_it = m_imsi_to_ue_ctx.find(imsi);
if (ue_ctx_it == m_imsi_to_ue_ctx.end()) {
m_hss_log->info("User not found. IMSI: %015" PRIu64 "\n", imsi);
m_hss_log->console("User not found at HSS. IMSI: %015" PRIu64 "\n", imsi);
return false;
}
hss_ue_ctx_t* ue_ctx = ue_ctx_it->second;
m_hss_log->info("Found User %015" PRIu64 "\n", imsi);
*qci = ue_ctx->qci;
return true;
}
bool hss::get_k_amf_opc_sqn(uint64_t imsi, uint8_t* k, uint8_t* amf, uint8_t* opc, uint8_t* sqn)
{
std::map<uint64_t, hss_ue_ctx_t*>::iterator ue_ctx_it = m_imsi_to_ue_ctx.find(imsi);
if (ue_ctx_it == m_imsi_to_ue_ctx.end()) {
m_hss_log->info("User not found. IMSI: %015" PRIu64 "\n", imsi);
m_hss_log->console("User not found at HSS. IMSI: %015" PRIu64 "\n", imsi);
return false;
}
hss_ue_ctx_t* ue_ctx = ue_ctx_it->second;
m_hss_log->info("Found User %015" PRIu64 "\n", imsi);
memcpy(k, ue_ctx->key, 16);
memcpy(amf, ue_ctx->amf, 2);
memcpy(opc, ue_ctx->opc, 16);
memcpy(sqn, ue_ctx->sqn, 6);
return true;
}
bool hss::resync_sqn(uint64_t imsi, uint8_t* auts)
{
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
m_hss_log->console("User not found at HSS. IMSI: %015" PRIu64 "\n", imsi);
m_hss_log->error("User not found at HSS. IMSI: %015" PRIu64 "\n", imsi);
return false;
}
switch (ue_ctx->algo) {
case HSS_ALGO_XOR:
ret = resync_sqn_xor(imsi, auts);
break;
case HSS_ALGO_MILENAGE:
ret = resync_sqn_milenage(imsi, auts);
break;
}
increment_seq_after_resync(imsi);
return ret;
}
bool hss::resync_sqn_xor(uint64_t imsi, uint8_t* auts)
{
m_hss_log->error("XOR SQN synchronization not supported yet\n");
m_hss_log->console("XOR SQNs synchronization not supported yet\n");
return false;
}
bool hss::resync_sqn_milenage(uint64_t imsi, uint8_t* auts)
{
uint8_t last_rand[16];
uint8_t ak[6];
uint8_t mac_s[8];
uint8_t sqn_ms_xor_ak[6];
uint8_t k[16];
uint8_t amf[2];
uint8_t opc[16];
uint8_t sqn[6];
if (!get_k_amf_opc_sqn(imsi, k, amf, opc, sqn)) {
return false;
}
get_last_rand(imsi, last_rand);
for (int i = 0; i < 6; i++) {
sqn_ms_xor_ak[i] = auts[i];
}
for (int i = 0; i < 8; i++) {
mac_s[i] = auts[i + 6];
}
m_hss_log->debug_hex(k, 16, "User Key : ");
m_hss_log->debug_hex(opc, 16, "User OPc : ");
m_hss_log->debug_hex(last_rand, 16, "User Last Rand : ");
m_hss_log->debug_hex(auts, 16, "AUTS : ");
m_hss_log->debug_hex(sqn_ms_xor_ak, 6, "SQN xor AK : ");
m_hss_log->debug_hex(mac_s, 8, "MAC : ");
srslte::security_milenage_f5_star(k, opc, last_rand, ak);
m_hss_log->debug_hex(ak, 6, "Resynch AK : ");
uint8_t sqn_ms[6];
for (int i = 0; i < 6; i++) {
sqn_ms[i] = sqn_ms_xor_ak[i] ^ ak[i];
}
m_hss_log->debug_hex(sqn_ms, 6, "SQN MS : ");
m_hss_log->debug_hex(sqn, 6, "SQN HE : ");
m_hss_log->debug_hex(amf, 2, "AMF : ");
uint8_t mac_s_tmp[8];
for (int i = 0; i < 2; i++) {
amf[i] = 0;
}
srslte::security_milenage_f1_star(k, opc, last_rand, sqn_ms, amf, mac_s_tmp);
m_hss_log->debug_hex(mac_s_tmp, 8, "MAC calc : ");
set_sqn(imsi, sqn_ms);
return true;
}
void hss::increment_ue_sqn(uint64_t imsi)
{
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
return;
}
increment_sqn(ue_ctx->sqn, ue_ctx->sqn);
m_hss_log->debug("Incremented SQN -- IMSI: %015" PRIu64 "\n", imsi);
m_hss_log->debug_hex(ue_ctx->sqn, 6, "SQN: ");
}
void hss::increment_sqn(uint8_t* sqn, uint8_t* next_sqn)
{
// The following SQN incrementation function is implemented according to 3GPP TS 33.102 version 11.5.1 Annex C
uint64_t seq;
uint64_t ind;
uint64_t sqn64;
sqn64 = 0;
for (int i = 0; i < 6; i++) {
sqn64 |= (uint64_t)sqn[i] << (5 - i) * 8;
}
seq = sqn64 >> LTE_FDD_ENB_IND_HE_N_BITS;
ind = sqn64 & LTE_FDD_ENB_IND_HE_MASK;
uint64_t nextseq;
uint64_t nextind;
uint64_t nextsqn;
nextseq = (seq + 1) % LTE_FDD_ENB_SEQ_HE_MAX_VALUE;
nextind = (ind + 1) % LTE_FDD_ENB_IND_HE_MAX_VALUE;
nextsqn = (nextseq << LTE_FDD_ENB_IND_HE_N_BITS) | nextind;
for (int i = 0; i < 6; i++) {
next_sqn[i] = (nextsqn >> (5 - i) * 8) & 0xFF;
}
return;
}
void hss::increment_seq_after_resync(uint64_t imsi)
{
// This function only increment the SEQ part of the SQN for resynchronization purpose
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
return;
}
uint8_t* sqn = ue_ctx->sqn;
uint64_t seq;
uint64_t ind;
uint64_t sqn64;
sqn64 = 0;
for (int i = 0; i < 6; i++) {
sqn64 |= (uint64_t)sqn[i] << (5 - i) * 8;
}
seq = sqn64 >> LTE_FDD_ENB_IND_HE_N_BITS;
ind = sqn64 & LTE_FDD_ENB_IND_HE_MASK;
uint64_t nextseq;
uint64_t nextsqn;
nextseq = (seq + 1) % LTE_FDD_ENB_SEQ_HE_MAX_VALUE;
nextsqn = (nextseq << LTE_FDD_ENB_IND_HE_N_BITS) | ind;
for (int i = 0; i < 6; i++) {
sqn[i] = (nextsqn >> (5 - i) * 8) & 0xFF;
}
return;
}
void hss::set_sqn(uint64_t imsi, uint8_t* sqn)
{
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
return;
}
memcpy(ue_ctx->sqn, sqn, 6);
}
void hss::set_last_rand(uint64_t imsi, uint8_t* rand)
{
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
return;
}
memcpy(ue_ctx->last_rand, rand, 16);
}
void hss::get_last_rand(uint64_t imsi, uint8_t* rand)
{
hss_ue_ctx_t* ue_ctx = NULL;
bool ret = get_ue_ctx(imsi, &ue_ctx);
if (ret == false) {
return;
}
memcpy(rand, ue_ctx->last_rand, 16);
}
void hss::gen_rand(uint8_t rand_[16])
{
for (int i = 0; i < 16; i++) {
rand_[i] = rand() % 256; // Pulls on byte at a time. It's slow, but does not depend on RAND_MAX.
}
return;
}
bool hss::get_ue_ctx(uint64_t imsi, hss_ue_ctx_t** ue_ctx)
{
std::map<uint64_t, hss_ue_ctx_t*>::iterator ue_ctx_it = m_imsi_to_ue_ctx.find(imsi);
if (ue_ctx_it == m_imsi_to_ue_ctx.end()) {
m_hss_log->info("User not found. IMSI: %015" PRIu64 "\n", imsi);
return false;
}
*ue_ctx = ue_ctx_it->second;
return true;
}
/* Helper functions*/
std::vector<std::string> hss::split_string(const std::string& str, char delimiter)
{
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(str);
while (std::getline(tokenStream, token, delimiter)) {
tokens.push_back(token);
}
return tokens;
}
void hss::get_uint_vec_from_hex_str(const std::string& key_str, uint8_t* key, uint len)
{
const char* pos = key_str.c_str();
for (uint count = 0; count < len; count++) {
sscanf(pos, "%2hhx", &key[count]);
pos += 2;
}
return;
}
std::string hss::hex_string(uint8_t* hex, int size)
{
std::stringstream ss;
ss << std::hex << std::setfill('0');
for (int i = 0; i < size; i++) {
ss << std::setw(2) << static_cast<unsigned>(hex[i]);
}
return ss.str();
}
std::map<std::string, uint64_t> hss::get_ip_to_imsi(void) const
{
return m_ip_to_imsi;
}
} // namespace srsepc