mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
409 lines
19 KiB
C++
409 lines
19 KiB
C++
/**
|
|
* Copyright 2013-2022 Software Radio Systems Limited
|
|
*
|
|
* This file is part of srsRAN.
|
|
*
|
|
* srsRAN is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Affero General Public License as
|
|
* published by the Free Software Foundation, either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* srsRAN is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Affero General Public License for more details.
|
|
*
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
* and at http://www.gnu.org/licenses/.
|
|
*
|
|
*/
|
|
|
|
/******************************************************************************
|
|
* File: vector.h
|
|
*
|
|
* Description: Vector functions using SIMD instructions where possible.
|
|
*
|
|
* Reference:
|
|
*****************************************************************************/
|
|
|
|
#ifndef SRSRAN_VECTOR_H
|
|
#define SRSRAN_VECTOR_H
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include "srsran/config.h"
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
|
|
#define SRSRAN_MEM_ALLOC(T, N) ((T*)srsran_vec_malloc((uint32_t)sizeof(T) * (N)))
|
|
#define SRSRAN_MEM_ZERO(Q, T, N) \
|
|
do { \
|
|
T* ptr_ = (Q); \
|
|
srsran_vec_zero((void*)ptr_, (uint32_t)sizeof(T) * (N)); \
|
|
} while (false)
|
|
|
|
#define SRSRAN_MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
#define SRSRAN_MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define SRSRAN_CEIL(NUM, DEN) (((NUM) + ((DEN)-1)) / (DEN))
|
|
#define SRSRAN_FLOOR(NUM, DEN) ((NUM) / (DEN))
|
|
#define SRSRAN_ROUND(NUM, DEN) ((uint32_t)round((double)(NUM) / (double)(DEN)))
|
|
#define SRSRAN_CEIL_LOG2(N) (((N) == 0) ? 0 : ceil(log2((double)(N))))
|
|
|
|
// Complex squared absolute value
|
|
#define SRSRAN_CSQABS(X) (__real__(X) * __real__(X) + __imag__(X) * __imag__(X))
|
|
|
|
// Cumulative moving average
|
|
#define SRSRAN_VEC_CMA(data, average, n) ((average) + ((data) - (average)) / ((n) + 1))
|
|
|
|
// Cumulative moving average
|
|
#ifdef __cplusplus
|
|
#define SRSRAN_VEC_SAFE_CMA(data, average, n) (std::isnormal(average) ? SRSRAN_VEC_CMA(data, average, n) : (data))
|
|
#else
|
|
#define SRSRAN_VEC_SAFE_CMA(data, average, n) (isnormal(average) ? SRSRAN_VEC_CMA(data, average, n) : (data))
|
|
#endif
|
|
|
|
// Proportional moving average
|
|
#define SRSRAN_VEC_PMA(average1, n1, average2, n2) (((average1) * (n1) + (average2) * (n2)) / ((n1) + (n2)))
|
|
|
|
// Safe Proportional moving average
|
|
#ifdef __cplusplus
|
|
#define SRSRAN_VEC_SAFE_PMA(average1, n1, average2, n2) \
|
|
(std::isnormal((n1) + (n2)) ? SRSRAN_VEC_PMA(average1, n1, average2, n2) : (0))
|
|
#else
|
|
#define SRSRAN_VEC_SAFE_PMA(average1, n1, average2, n2) \
|
|
(isnormal((n1) + (n2)) ? SRSRAN_VEC_PMA(average1, n1, average2, n2) : (0))
|
|
#endif
|
|
|
|
// Exponential moving average
|
|
#define SRSRAN_VEC_EMA(data, average, alpha) ((alpha) * (data) + (1 - alpha) * (average))
|
|
|
|
// Safe exponential moving average
|
|
#ifdef __cplusplus
|
|
#define SRSRAN_VEC_SAFE_EMA(data, average, alpha) \
|
|
(std::isnormal(average) ? SRSRAN_VEC_EMA(data, average, alpha) : (data))
|
|
#else
|
|
#define SRSRAN_VEC_SAFE_EMA(data, average, alpha) (isnormal(average) ? SRSRAN_VEC_EMA(data, average, alpha) : (data))
|
|
#endif
|
|
|
|
static inline float srsran_convert_amplitude_to_dB(float v)
|
|
{
|
|
return 20.0f * log10f(v);
|
|
}
|
|
static inline float srsran_convert_power_to_dB(float v)
|
|
{
|
|
return 10.0f * log10f(v);
|
|
}
|
|
static inline float srsran_convert_power_to_dBm(float v)
|
|
{
|
|
return srsran_convert_power_to_dB(v) + 30.0f;
|
|
}
|
|
static inline float srsran_convert_dB_to_amplitude(float v)
|
|
{
|
|
return powf(10.0f, v / 20.0f);
|
|
}
|
|
static inline float srsran_convert_dB_to_power(float v)
|
|
{
|
|
return powf(10.0f, v / 10.0f);
|
|
}
|
|
|
|
/*!
|
|
* Computes \f$ z = x \oplus y \f$ elementwise.
|
|
* \param[in] x A pointer to a vector of uint8_t with 0's and 1's.
|
|
* \param[in] y A pointer to a vector of uint8_t with 0's and 1's.
|
|
* \param[out] z A pointer to a vector of uint8_t with 0's and 1's.
|
|
* \param[in] len Length of vectors x, y and z.
|
|
*/
|
|
SRSRAN_API void srsran_vec_xor_bbb(const uint8_t* x, const uint8_t* y, uint8_t* z, const uint32_t len);
|
|
|
|
/** Return the sum of all the elements */
|
|
SRSRAN_API float srsran_vec_acc_ff(const float* x, const uint32_t len);
|
|
SRSRAN_API cf_t srsran_vec_acc_cc(const cf_t* x, const uint32_t len);
|
|
|
|
SRSRAN_API void* srsran_vec_malloc(uint32_t size);
|
|
SRSRAN_API cf_t* srsran_vec_cf_malloc(uint32_t size);
|
|
SRSRAN_API float* srsran_vec_f_malloc(uint32_t size);
|
|
SRSRAN_API int32_t* srsran_vec_i32_malloc(uint32_t nsamples);
|
|
SRSRAN_API uint32_t* srsran_vec_u32_malloc(uint32_t nsamples);
|
|
SRSRAN_API int16_t* srsran_vec_i16_malloc(uint32_t nsamples);
|
|
SRSRAN_API uint16_t* srsran_vec_u16_malloc(uint32_t nsamples);
|
|
SRSRAN_API int8_t* srsran_vec_i8_malloc(uint32_t nsamples);
|
|
SRSRAN_API uint8_t* srsran_vec_u8_malloc(uint32_t nsamples);
|
|
|
|
SRSRAN_API void* srsran_vec_realloc(void* ptr, uint32_t old_size, uint32_t new_size);
|
|
|
|
/* Zero memory */
|
|
SRSRAN_API void srsran_vec_zero(void* ptr, uint32_t nsamples);
|
|
SRSRAN_API void srsran_vec_cf_zero(cf_t* ptr, uint32_t nsamples);
|
|
SRSRAN_API void srsran_vec_f_zero(float* ptr, uint32_t nsamples);
|
|
SRSRAN_API void srsran_vec_i8_zero(int8_t* ptr, uint32_t nsamples);
|
|
SRSRAN_API void srsran_vec_u8_zero(uint8_t* ptr, uint32_t nsamples);
|
|
SRSRAN_API void srsran_vec_i16_zero(int16_t* ptr, uint32_t nsamples);
|
|
SRSRAN_API void srsran_vec_u32_zero(uint32_t* ptr, uint32_t nsamples);
|
|
|
|
/* Copy memory */
|
|
SRSRAN_API void srsran_vec_cf_copy(cf_t* dst, const cf_t* src, uint32_t len);
|
|
SRSRAN_API void srsran_vec_f_copy(float* dst, const float* src, uint32_t len);
|
|
SRSRAN_API void srsran_vec_u8_copy(uint8_t* dst, const uint8_t* src, uint32_t len);
|
|
SRSRAN_API void srsran_vec_i8_copy(int8_t* dst, const int8_t* src, uint32_t len);
|
|
SRSRAN_API void srsran_vec_u16_copy(uint16_t* dst, const uint16_t* src, uint32_t len);
|
|
SRSRAN_API void srsran_vec_i16_copy(int16_t* dst, const int16_t* src, uint32_t len);
|
|
|
|
/* print vectors */
|
|
SRSRAN_API void srsran_vec_fprint_c(FILE* stream, const cf_t* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_f(FILE* stream, const float* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_b(FILE* stream, const uint8_t* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_bs(FILE* stream, const int8_t* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_byte(FILE* stream, const uint8_t* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_i(FILE* stream, const int* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_s(FILE* stream, const int16_t* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_fprint_hex(FILE* stream, uint8_t* x, const uint32_t len);
|
|
SRSRAN_API uint32_t srsran_vec_sprint_hex(char* str, const uint32_t max_str_len, uint8_t* x, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sprint_bin(char* str, const uint32_t max_str_len, const uint8_t* x, const uint32_t len);
|
|
|
|
/* Saves/loads a vector to a file */
|
|
SRSRAN_API void srsran_vec_save_file(char* filename, const void* buffer, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_load_file(char* filename, void* buffer, const uint32_t len);
|
|
|
|
/* sum two vectors */
|
|
SRSRAN_API void srsran_vec_sum_fff(const float* x, const float* y, float* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sum_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sum_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len);
|
|
|
|
/* substract two vectors z=x-y */
|
|
SRSRAN_API void srsran_vec_sub_fff(const float* x, const float* y, float* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sub_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sub_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sub_bbb(const int8_t* x, const int8_t* y, int8_t* z, const uint32_t len);
|
|
|
|
/* sum a scalar to all elements of a vector */
|
|
SRSRAN_API void srsran_vec_sc_sum_fff(const float* x, float h, float* z, uint32_t len);
|
|
|
|
/* scalar product */
|
|
SRSRAN_API void srsran_vec_sc_prod_cfc(const cf_t* x, const float h, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sc_prod_fcc(const float* x, const cf_t h, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sc_prod_ccc(const cf_t* x, const cf_t h, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_sc_prod_fff(const float* x, const float h, float* z, const uint32_t len);
|
|
|
|
SRSRAN_API void srsran_vec_convert_fi(const float* x, const float scale, int16_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_convert_conj_cs(const cf_t* x, const float scale, int16_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_convert_if(const int16_t* x, const float scale, float* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_convert_fb(const float* x, const float scale, int8_t* z, const uint32_t len);
|
|
|
|
SRSRAN_API void srsran_vec_lut_sss(const short* x, const unsigned short* lut, short* y, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_lut_bbb(const int8_t* x, const unsigned short* lut, int8_t* y, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_lut_sis(const short* x, const unsigned int* lut, short* y, const uint32_t len);
|
|
|
|
/* vector product (element-wise) */
|
|
SRSRAN_API void srsran_vec_prod_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_prod_ccc_split(const float* x_re,
|
|
const float* x_im,
|
|
const float* y_re,
|
|
const float* y_im,
|
|
float* z_re,
|
|
float* z_im,
|
|
const uint32_t len);
|
|
|
|
/* vector product (element-wise) */
|
|
SRSRAN_API void srsran_vec_prod_cfc(const cf_t* x, const float* y, cf_t* z, const uint32_t len);
|
|
|
|
/* conjugate vector product (element-wise) */
|
|
SRSRAN_API void srsran_vec_prod_conj_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len);
|
|
|
|
/* real vector product (element-wise) */
|
|
SRSRAN_API void srsran_vec_prod_fff(const float* x, const float* y, float* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_prod_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len);
|
|
|
|
// Negate sign (scrambling)
|
|
SRSRAN_API void srsran_vec_neg_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_neg_bbb(const int8_t* x, const int8_t* y, int8_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_neg_bb(const int8_t* x, int8_t* z, const uint32_t len);
|
|
|
|
/* Dot-product */
|
|
SRSRAN_API cf_t srsran_vec_dot_prod_cfc(const cf_t* x, const float* y, const uint32_t len);
|
|
SRSRAN_API cf_t srsran_vec_dot_prod_ccc(const cf_t* x, const cf_t* y, const uint32_t len);
|
|
SRSRAN_API cf_t srsran_vec_dot_prod_conj_ccc(const cf_t* x, const cf_t* y, const uint32_t len);
|
|
SRSRAN_API float srsran_vec_dot_prod_fff(const float* x, const float* y, const uint32_t len);
|
|
SRSRAN_API int32_t srsran_vec_dot_prod_sss(const int16_t* x, const int16_t* y, const uint32_t len);
|
|
|
|
/* z=x/y vector division (element-wise) */
|
|
SRSRAN_API void srsran_vec_div_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_div_cfc(const cf_t* x, const float* y, cf_t* z, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_div_fff(const float* x, const float* y, float* z, const uint32_t len);
|
|
|
|
/* conjugate */
|
|
SRSRAN_API void srsran_vec_conj_cc(const cf_t* x, cf_t* y, const uint32_t len);
|
|
|
|
/* average vector power */
|
|
SRSRAN_API float srsran_vec_avg_power_cf(const cf_t* x, const uint32_t len);
|
|
SRSRAN_API float srsran_vec_avg_power_sf(const int16_t* x, const uint32_t len);
|
|
SRSRAN_API float srsran_vec_avg_power_bf(const int8_t* x, const uint32_t len);
|
|
SRSRAN_API float srsran_vec_avg_power_ff(const float* x, const uint32_t len);
|
|
|
|
/* Correlation between complex vectors x and y */
|
|
SRSRAN_API float srsran_vec_corr_ccc(const cf_t* x, cf_t* y, const uint32_t len);
|
|
|
|
/* return the index of the maximum value in the vector */
|
|
SRSRAN_API uint32_t srsran_vec_max_fi(const float* x, const uint32_t len);
|
|
SRSRAN_API uint32_t srsran_vec_max_abs_fi(const float* x, const uint32_t len);
|
|
SRSRAN_API uint32_t srsran_vec_max_abs_ci(const cf_t* x, const uint32_t len);
|
|
|
|
/*!
|
|
* Quantizes an array of floats into an array of 16-bit signed integers. It is
|
|
* ensured that *-inf* and *inf* map to -32767 and 32767, respectively (useful
|
|
* when quantizing on less than 16 bits).
|
|
* \param[in] in Real values to be quantized.
|
|
* \param[out] out Quantized values.
|
|
* \param[in] gain Quantization gain, controls the output range.
|
|
* \param[in] offset Quantization offset, for asymmetric quantization.
|
|
* \param[in] clip Saturation value.
|
|
* \param[in] len Number of values to be quantized.
|
|
*/
|
|
SRSRAN_API void srsran_vec_quant_fs(const float* in, int16_t* out, float gain, float offset, float clip, uint32_t len);
|
|
|
|
/*!
|
|
* Quantizes an array of floats into an array of 8-bit signed integers. It is
|
|
* ensured that *-inf* and *inf* map to -127 and 127, respectively (useful
|
|
* when quantizing on less than 8 bits).
|
|
* \param[in] in Real values to be quantized.
|
|
* \param[out] out Quantized values.
|
|
* \param[in] gain Quantization gain, controls the output range.
|
|
* \param[in] offset Quantization offset, for asymmetric quantization.
|
|
* \param[in] clip Saturation value.
|
|
* \param[in] len Number of values to be quantized.
|
|
*/
|
|
SRSRAN_API void srsran_vec_quant_fc(const float* in, int8_t* out, float gain, float offset, float clip, uint32_t len);
|
|
|
|
/* quantify vector of floats or int16 and convert to uint8_t */
|
|
SRSRAN_API void srsran_vec_quant_fuc(const float* in,
|
|
uint8_t* out,
|
|
const float gain,
|
|
const float offset,
|
|
const uint8_t clip,
|
|
const uint32_t len);
|
|
SRSRAN_API void srsran_vec_quant_fus(const float* in,
|
|
uint16_t* out,
|
|
const float gain,
|
|
const float offset,
|
|
const uint16_t clip,
|
|
const uint32_t len);
|
|
SRSRAN_API void srsran_vec_quant_suc(const int16_t* in,
|
|
uint8_t* out,
|
|
const float gain,
|
|
const float offset,
|
|
const uint8_t clip,
|
|
const uint32_t len);
|
|
|
|
SRSRAN_API void srsran_vec_quant_sus(const int16_t* in,
|
|
uint16_t* out,
|
|
const float gain,
|
|
const float offset,
|
|
const uint16_t clip,
|
|
const uint32_t len);
|
|
/* magnitude of each vector element */
|
|
SRSRAN_API void srsran_vec_abs_cf(const cf_t* x, float* abs, const uint32_t len);
|
|
SRSRAN_API void srsran_vec_abs_square_cf(const cf_t* x, float* abs_square, const uint32_t len);
|
|
|
|
/**
|
|
* @brief Extracts module in decibels of a complex vector
|
|
*
|
|
* This function extracts the module in decibels of a complex array input. Abnormal absolute value inputs (zero,
|
|
* infinity and not-a-number) are set to default_value outputs.
|
|
*
|
|
* Equivalent code:
|
|
* for (int i = 0; i < len; i++) {
|
|
* float mag = x[i];
|
|
*
|
|
* // Check boundaries
|
|
* if (isnormal(mag)) {
|
|
* // Avoid infinites and zeros
|
|
* abs[i] = 20.0f * log10f(mag);
|
|
* } else {
|
|
* // Set to default value instead
|
|
* abs[i] = default_value;
|
|
* }
|
|
* }
|
|
*
|
|
* @param x is the input complex vector
|
|
* @param default_value is the value to use in case of having an abnormal absolute value.
|
|
* @param abs is the destination vector
|
|
* @param len is the input and output number of samples
|
|
*
|
|
*/
|
|
SRSRAN_API void srsran_vec_abs_dB_cf(const cf_t* x, float default_value, float* abs, const uint32_t len);
|
|
|
|
/**
|
|
* @brief Extracts argument in degrees from a complex vector
|
|
*
|
|
* This function extracts the argument from a complex vector. Infinity and not-a-number results are set to
|
|
* default_value.
|
|
*
|
|
* Equivalent code:
|
|
* for(int i = 0; i < len; i++) {
|
|
* arg[i] = cargf(x[i]) * (180.0f / M_PI);
|
|
*
|
|
* if (arg[i]!=0.0f && !isnormal(arg[i])) {
|
|
* arg[i] = default_value;
|
|
* }
|
|
* }
|
|
*
|
|
* @param x is the input complex vector
|
|
* @param default_value is the value to use in case of having an abnormal result.
|
|
* @param arg is the destination vector
|
|
* @param len is the input and output number of samples
|
|
*
|
|
*/
|
|
SRSRAN_API void srsran_vec_arg_deg_cf(const cf_t* x, float default_value, float* arg, const uint32_t len);
|
|
|
|
SRSRAN_API float srsran_mean_arg_cf(const cf_t* x, uint32_t len);
|
|
|
|
SRSRAN_API void srsran_vec_interleave(const cf_t* x, const cf_t* y, cf_t* z, const int len);
|
|
|
|
SRSRAN_API void srsran_vec_interleave_add(const cf_t* x, const cf_t* y, cf_t* z, const int len);
|
|
|
|
SRSRAN_API cf_t srsran_vec_gen_sine(cf_t amplitude, float freq, cf_t* z, int len);
|
|
|
|
SRSRAN_API void srsran_vec_apply_cfo(const cf_t* x, float cfo, cf_t* z, int len);
|
|
|
|
SRSRAN_API float srsran_vec_estimate_frequency(const cf_t* x, int len);
|
|
|
|
/*!
|
|
* @brief Generates an amplitude envelope that, multiplied point-wise with a vector, results in clipping
|
|
* by a specified amplitude threshold.
|
|
* @param[in] x_abs Absolute value vector of the signal to be clipped
|
|
* @param[in] thres Clipping threshold
|
|
* @param[out] clip_env The generated clipping envelope
|
|
* @param[in] len Length of the vector.
|
|
*/
|
|
SRSRAN_API void
|
|
srsran_vec_gen_clip_env(const float* x_abs, const float thres, const float alpha, float* env, const int len);
|
|
|
|
/*!
|
|
* @brief Calculates the PAPR of a complex vector
|
|
* @param[in] in Input vector
|
|
* @param[in] len Vector length.
|
|
*/
|
|
SRSRAN_API float srsran_vec_papr_c(const cf_t* in, const int len);
|
|
|
|
/*!
|
|
* @brief Calculates the ACPR of a signal using its baseband spectrum
|
|
* @attention The spectrum passed by x_f needs to be in FFT form
|
|
* @param[in] x_f Spectrum of the signal
|
|
* @param[in] win_pos_len Channel frequency window for the positive side of the spectrum
|
|
* @param[in] win_neg_len Channel frequency window for the negative side of the spectrum
|
|
* @param[in] len Length of the x_f vector
|
|
* @returns The ACPR in linear form
|
|
*/
|
|
SRSRAN_API float
|
|
srsran_vec_acpr_c(const cf_t* x_f, const uint32_t win_pos_len, const uint32_t win_neg_len, const uint32_t len);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // SRSRAN_VECTOR_H
|