Fork of SRS repository `srsRAN_4G`. Branch fix_cqi to fix srsUE issues.
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
ismagom 3566b6d8e5 PBCH example capture 11 years ago
cmake/modules Added VOLK support 11 years ago
cuhd CMake chekcs for Qwt6. Fixed UHD close RX stream at exit 11 years ago
examples Using CTest for testing 11 years ago
graphics Removed Boost dependencies in graphics library 11 years ago
lte Using CTest for testing 11 years ago
matlab Reorganized the directory structure. Added Graphics support. Added precoding/layer mapper. MIB detection now working with 1 or 2 tx antennas. Initial eNodeB implementation with PSS/SSS and PBCH generation 11 years ago
scripts Reorganized the directory structure. Added Graphics support. Added precoding/layer mapper. MIB detection now working with 1 or 2 tx antennas. Initial eNodeB implementation with PSS/SSS and PBCH generation 11 years ago
CMakeLists.txt Using CTest for testing 11 years ago
COPYRIGHT Reorganized the directory structure. Added Graphics support. Added precoding/layer mapper. MIB detection now working with 1 or 2 tx antennas. Initial eNodeB implementation with PSS/SSS and PBCH generation 11 years ago
CTestConfig.cmake Using CTest for testing 11 years ago
LICENSE Initial commit 11 years ago
README.md Update README.md 11 years ago
cmake_uninstall.cmake.in Reorganized the directory structure. Added Graphics support. Added precoding/layer mapper. MIB detection now working with 1 or 2 tx antennas. Initial eNodeB implementation with PSS/SSS and PBCH generation 11 years ago
pbch_capture.png PBCH example capture 11 years ago

README.md

libLTE

libLTE is a free and open-source LTE library for SDR UE and eNodeB. The library does not rely on any external dependencies or frameworks.

The license is LGPLv3.

The project contains a set of Python tools for the automatic code generation of modules for popular SDR frameworks, including GNURadio, ALOE++, IRIS, and OSSIE. These tools are easy to use and adapt for generating targets for specific platforms or frameworks.

Support

Mailing list: https://lists.sourceforge.net/lists/listinfo/liblte-users

Download & Install Instructions

git clone https://github.com/ismagom/libLTE.git
cd libLTE
mkdir build
cd build
cmake ../
make 
sudo make install

Cell Search Example

This program uses any hardware supported by the UHD driver to scan an LTE band for active cells. See http://niviuk.free.fr/lte_band.php for a list of available bands. The program first obtains a power spectral density of the entire band. For all frequencies with an RSSI higher than a threshold, it tries to find the LTE Primary Synchronization Signal (PSS) and then identifies the CELL ID using the Secondary Synchronization Signal (SSS). Finally, it estimates the Carrier Frequency Offset (CFO) and Sampling Frequency Offset (SFO).

For instance, the command:

pss_scan_usrp -b 3

Scans the LTE band 3 (1805 to 1880 MHz). Note that you need a hardware supporting these frequencies (e.g. SBX daughterboard for USRP). The program outputs the following:

Opening UHD device...
-- Opening a USRP2/N-Series device...
-- Current recv frame size: 1472 bytes
-- Current send frame size: 1472 bytes
RSSI scan: 749 freqs in band 3, RSSI threshold -30.00 dBm
Freq 1879.0 Mhz - RSSI: -43.96 dBm
Done. Starting PSS search on 75 channels

UHD Warning:
    The hardware does not support the requested RX sample rate:
    Target sample rate: 1.920000 MSps
    Actual sample rate: 1.923077 MSps
[199/749]: EARFCN 1399 Freq. 1824.90 MHz No PSS found
[200/749]: FOUND EARFCN 1400 Freq. 1825.00 MHz, RSSI -22.43 dBm, PAR 15.86 dB, CFO=-0.25 KHz, SFO=+3.099 KHz, CELL_ID=150
[433/749]: EARFCN 1633 Freq. 1848.30 MHz No PSS found

Done

indicating that a Cell with ID 150 has been found at 1825.0 MHz. PAR indicates the peak-to-average ratio (in dB) at the output of the PSS correlator.

For more command arguments, type pss_scan_usrp --help