You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

565 lines
23 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/srslte.h"
#include "pdcp_interface_types.h"
#include "rlc_interface_types.h"
#include "rrc_interface_types.h"
#include "srslte/asn1/rrc_asn1.h"
#include "srslte/asn1/s1ap_asn1.h"
#include "srslte/common/common.h"
#include "srslte/common/interfaces_common.h"
#include "srslte/common/security.h"
#include "srslte/interfaces/sched_interface.h"
#include <vector>
#ifndef SRSLTE_ENB_INTERFACES_H
#define SRSLTE_ENB_INTERFACES_H
namespace srsenb {
/* Interface PHY -> MAC */
class mac_interface_phy_lte
{
public:
const static int MAX_GRANTS = 64;
/**
* DL grant structure per UE
*/
typedef struct {
srslte_dci_dl_t dci = {};
uint8_t* data[SRSLTE_MAX_TB] = {};
srslte_softbuffer_tx_t* softbuffer_tx[SRSLTE_MAX_TB] = {};
} dl_sched_grant_t;
/**
* DL Scheduling result per cell/carrier
*/
typedef struct {
dl_sched_grant_t pdsch[MAX_GRANTS]; //< DL Grants
uint32_t nof_grants; //< Number of DL grants
uint32_t cfi; //< Current CFI of the cell, it can vary across cells
} dl_sched_t;
/**
* List of DL scheduling results, one entry per cell/carrier
*/
typedef std::vector<dl_sched_t> dl_sched_list_t;
typedef struct {
uint16_t rnti;
bool ack;
} ul_sched_ack_t;
/**
* UL grant information per UE
*/
typedef struct {
srslte_dci_ul_t dci;
uint32_t current_tx_nb;
uint8_t* data;
bool needs_pdcch;
srslte_softbuffer_rx_t* softbuffer_rx;
} ul_sched_grant_t;
/**
* UL Scheduling result per cell/carrier
*/
typedef struct {
ul_sched_grant_t pusch[MAX_GRANTS];
ul_sched_ack_t phich[MAX_GRANTS];
uint32_t nof_grants;
uint32_t nof_phich;
} ul_sched_t;
/**
* List of UL scheduling results, one entry per cell/carrier
*/
typedef std::vector<ul_sched_t> ul_sched_list_t;
virtual int sr_detected(uint32_t tti, uint16_t rnti) = 0;
virtual void rach_detected(uint32_t tti, uint32_t primary_cc_idx, uint32_t preamble_idx, uint32_t time_adv) = 0;
/**
* PHY callback for giving MAC the Rank Indicator information of a given RNTI for an eNb cell/carrier.
*
* @param tti the given TTI
* @param rnti the UE identifier in the eNb
* @param cc_idx The eNb Cell/Carrier where the measurement corresponds
* @param ri_value the actual Rank Indicator value, 0 for 1 layer, 1 for two layers and so on.
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int ri_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t ri_value) = 0;
/**
* PHY callback for giving MAC the Pre-coding Matrix Indicator information of a given RNTI for an eNb cell/carrier.
*
* @param tti the given TTI
* @param rnti the UE identifier in the eNb
* @param cc_idx The eNb Cell/Carrier where the measurement corresponds
* @param pmi_value the actual PMI value
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int pmi_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t pmi_value) = 0;
/**
* PHY callback for for giving MAC the Channel Quality information of a given RNTI, TTI and eNb cell/carrier
* @param tti the given TTI
* @param rnti the UE identifier in the eNb
* @param cc_idx The eNb Cell/Carrier where the measurement corresponds
* @param cqi_value the corresponding Channel Quality Information
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int cqi_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t cqi_value) = 0;
/**
* PHY callback for giving MAC the SNR in dB of an UL transmission for a given RNTI at a given carrier
*
* @param tti The measurement was made
* @param rnti The UE identifier in the eNb
* @param cc_idx The eNb Cell/Carrier where the UL transmission was received
* @param snr_db The actual SNR of the received signal
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int snr_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, float snr_db) = 0;
/**
* PHY callback for giving MAC the Time Aligment information in microseconds of a given RNTI during a TTI processing
*
* @param tti The measurement was made
* @param rnti The UE identifier in the eNb
* @param ta_us The actual time alignment in microseconds
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int ta_info(uint32_t tti, uint16_t rnti, float ta_us) = 0;
/**
* PHY callback for giving MAC the HARQ DL ACK/NACK feedback information for a given RNTI, TTI, eNb cell/carrier and
* Transport block.
*
* @param tti the given TTI
* @param rnti the UE identifier in the eNb
* @param cc_idx the eNb Cell/Carrier identifier
* @param tb_idx the transport block index
* @param ack true for ACK, false for NACK, do not call for DTX
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int ack_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t tb_idx, bool ack) = 0;
/**
* Informs MAC about a received PUSCH transmission for given RNTI, TTI and eNb Cell/carrier.
*
* @param tti the given TTI
* @param rnti the UE identifier in the eNb
* @param cc_idx the eNb Cell/Carrier identifier
* @param nof_bytes the number of grants carrierd by the PUSCH message
* @param crc_res the CRC check, set to true if the message was decoded succesfully
* @return SRSLTE_SUCCESS if no error occurs, SRSLTE_ERROR* if an error occurs
*/
virtual int crc_info(uint32_t tti, uint16_t rnti, uint32_t cc_idx, uint32_t nof_bytes, bool crc_res) = 0;
virtual int get_dl_sched(uint32_t tti, dl_sched_list_t& dl_sched_res) = 0;
virtual int get_mch_sched(uint32_t tti, bool is_mcch, dl_sched_list_t& dl_sched_res) = 0;
virtual int get_ul_sched(uint32_t tti, ul_sched_list_t& ul_sched_res) = 0;
virtual void set_sched_dl_tti_mask(uint8_t* tti_mask, uint32_t nof_sfs) = 0;
};
/* Interface MAC -> PHY */
class phy_interface_mac_lte
{
public:
/**
* Removes an RNTI context from all the physical layer components, including secondary cells
* @param rnti identifier of the user
*/
virtual void rem_rnti(uint16_t rnti) = 0;
/**
* Pregenerates the scrambling sequences for a given RNTI.
* WARNING: This function make take several ms to complete.
*
* @param rnti identifier of the user
*/
virtual int pregen_sequences(uint16_t rnti) = 0;
/**
*
* @param stop
*/
virtual void set_mch_period_stop(uint32_t stop) = 0;
/**
* Activates and/or deactivates Secondary Cells in the PHY for a given RNTI. Requires the RNTI of the given UE and a
* vector with the activation/deactivation values. Use true for activation and false for deactivation. The index 0 is
* reserved for PCell and will not be used.
*
* @param rnti identifier of the user
* @param activation vector with the activate/deactivate.
*/
virtual void set_activation_deactivation_scell(uint16_t rnti,
const std::array<bool, SRSLTE_MAX_CARRIERS>& activation) = 0;
};
/* Interface RRC -> PHY */
class phy_interface_rrc_lte
{
public:
struct phy_cfg_mbsfn_t {
asn1::rrc::mbsfn_sf_cfg_s mbsfn_subfr_cnfg;
asn1::rrc::mbms_notif_cfg_r9_s mbsfn_notification_cnfg;
asn1::rrc::mbsfn_area_info_r9_s mbsfn_area_info;
asn1::rrc::mcch_msg_s mcch;
};
virtual void configure_mbsfn(asn1::rrc::sib_type2_s* sib2,
asn1::rrc::sib_type13_r9_s* sib13,
const asn1::rrc::mcch_msg_s& mcch) = 0;
typedef struct {
bool configured = false; ///< Indicates whether PHY shall consider configuring this cell/carrier
uint32_t enb_cc_idx = 0; ///< eNb Cell index
srslte::phy_cfg_t phy_cfg = {}; ///< Dedicated physical layer configuration
} phy_rrc_cfg_t;
typedef std::vector<phy_rrc_cfg_t> phy_rrc_cfg_list_t;
/**
* Sets the physical layer dedicated configuration for a given RNTI. The dedicated configuration list shall provide
* all the required information configuration for the following cases:
* - Add an RNTI straight from RRC
* - Moving primary to another serving cell
* - Add/Remove secondary serving cells
*
* Remind this call will partially reconfigure the primary serving cell, `complete_config``shall be called
* in order to complete the configuration.
*
* @param rnti the given RNTI
* @param phy_cfg_list Physical layer configuration for the indicated eNb cell
*/
virtual void set_config(uint16_t rnti, const phy_rrc_cfg_list_t& phy_cfg_list) = 0;
/**
* Instructs the physical layer the configuration has been complete from upper layers for a given RNTI
*
* @param rnti the given UE identifier (RNTI)
*/
virtual void complete_config(uint16_t rnti) = 0;
};
class mac_interface_rrc
{
public:
/* Provides cell configuration including SIB periodicity, etc. */
virtual int cell_cfg(const std::vector<sched_interface::cell_cfg_t>& cell_cfg) = 0;
virtual void reset() = 0;
/* Manages UE configuration context */
virtual int ue_cfg(uint16_t rnti, sched_interface::ue_cfg_t* cfg) = 0;
virtual int ue_rem(uint16_t rnti) = 0;
/**
* Called after Msg3 reception to set the UE C-RNTI, resolve contention, and alter the UE's configuration in the
* scheduler and phy.
*
* @param temp_crnti temporary C-RNTI of the UE
* @param crnti chosen C-RNTI for the UE
* @param cfg new UE scheduler configuration
*/
virtual int ue_set_crnti(uint16_t temp_crnti, uint16_t crnti, sched_interface::ue_cfg_t* cfg) = 0;
/* Manages UE bearers and associated configuration */
virtual int bearer_ue_cfg(uint16_t rnti, uint32_t lc_id, sched_interface::ue_bearer_cfg_t* cfg) = 0;
virtual int bearer_ue_rem(uint16_t rnti, uint32_t lc_id) = 0;
virtual void phy_config_enabled(uint16_t rnti, bool enabled) = 0;
virtual void
write_mcch(asn1::rrc::sib_type2_s* sib2, asn1::rrc::sib_type13_r9_s* sib13, asn1::rrc::mcch_msg_s* mcch) = 0;
/**
* Allocate a C-RNTI for a new user, without adding it to the phy layer and scheduler yet
* @return value of the allocated C-RNTI
*/
virtual uint16_t reserve_new_crnti(const sched_interface::ue_cfg_t& ue_cfg) = 0;
};
class mac_interface_rlc
{
public:
virtual int rlc_buffer_state(uint16_t rnti, uint32_t lc_id, uint32_t tx_queue, uint32_t retx_queue) = 0;
};
// RLC interface for MAC
class rlc_interface_mac
{
public:
/* MAC calls RLC to get RLC segment of nof_bytes length.
* Segmentation happens in this function. RLC PDU is stored in payload. */
virtual int read_pdu(uint16_t rnti, uint32_t lcid, uint8_t* payload, uint32_t nof_bytes) = 0;
virtual void read_pdu_pcch(uint8_t* payload, uint32_t buffer_size) = 0;
/* MAC calls RLC to push an RLC PDU. This function is called from an independent MAC thread.
* PDU gets placed into the buffer and higher layer thread gets notified. */
virtual void write_pdu(uint16_t rnti, uint32_t lcid, uint8_t* payload, uint32_t nof_bytes) = 0;
};
// RLC interface for PDCP
class rlc_interface_pdcp
{
public:
/* PDCP calls RLC to push an RLC SDU. SDU gets placed into the RLC buffer and MAC pulls
* RLC PDUs according to TB size. */
virtual void write_sdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
virtual void discard_sdu(uint16_t rnti, uint32_t lcid, uint32_t sn) = 0;
virtual bool rb_is_um(uint16_t rnti, uint32_t lcid) = 0;
virtual bool sdu_queue_is_full(uint16_t rnti, uint32_t lcid) = 0;
};
// RLC interface for RRC
class rlc_interface_rrc
{
public:
virtual void clear_buffer(uint16_t rnti) = 0;
virtual void add_user(uint16_t rnti) = 0;
virtual void rem_user(uint16_t rnti) = 0;
virtual void add_bearer(uint16_t rnti, uint32_t lcid, srslte::rlc_config_t cnfg) = 0;
virtual void add_bearer_mrb(uint16_t rnti, uint32_t lcid) = 0;
virtual void del_bearer(uint16_t rnti, uint32_t lcid) = 0;
virtual void write_sdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
virtual bool has_bearer(uint16_t rnti, uint32_t lcid) = 0;
virtual bool suspend_bearer(uint16_t rnti, uint32_t lcid) = 0;
virtual bool resume_bearer(uint16_t rnti, uint32_t lcid) = 0;
virtual void reestablish(uint16_t rnti) = 0;
};
// PDCP interface for GTPU
class pdcp_interface_gtpu
{
public:
virtual void write_sdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
};
// PDCP interface for RRC
class pdcp_interface_rrc
{
public:
virtual void reset(uint16_t rnti) = 0;
virtual void add_user(uint16_t rnti) = 0;
virtual void rem_user(uint16_t rnti) = 0;
virtual void write_sdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
virtual void add_bearer(uint16_t rnti, uint32_t lcid, srslte::pdcp_config_t cnfg) = 0;
virtual void del_bearer(uint16_t rnti, uint32_t lcid) = 0;
virtual void config_security(uint16_t rnti, uint32_t lcid, srslte::as_security_config_t sec_cfg) = 0;
virtual void enable_integrity(uint16_t rnti, uint32_t lcid) = 0;
virtual void enable_encryption(uint16_t rnti, uint32_t lcid) = 0;
virtual bool get_bearer_state(uint16_t rnti, uint32_t lcid, srslte::pdcp_lte_state_t* state) = 0;
virtual bool set_bearer_state(uint16_t rnti, uint32_t lcid, const srslte::pdcp_lte_state_t& state) = 0;
};
// PDCP interface for RLC
class pdcp_interface_rlc
{
public:
/* RLC calls PDCP to push a PDCP PDU. */
virtual void write_pdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
};
// RRC interface for RLC
class rrc_interface_rlc
{
public:
virtual void read_pdu_pcch(uint8_t* payload, uint32_t payload_size) = 0;
virtual void max_retx_attempted(uint16_t rnti) = 0;
virtual void write_pdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t sdu) = 0;
};
// RRC interface for MAC
class rrc_interface_mac
{
public:
/* Radio Link failure */
virtual void add_user(uint16_t rnti, const sched_interface::ue_cfg_t& init_ue_cfg) = 0;
virtual void upd_user(uint16_t new_rnti, uint16_t old_rnti) = 0;
virtual void set_activity_user(uint16_t rnti) = 0;
virtual bool is_paging_opportunity(uint32_t tti, uint32_t* payload_len) = 0;
///< Provide packed SIB to MAC (buffer is managed by RRC)
virtual uint8_t* read_pdu_bcch_dlsch(const uint8_t enb_cc_idx, const uint32_t sib_index) = 0;
};
// RRC interface for PDCP
class rrc_interface_pdcp
{
public:
virtual void write_pdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
};
// RRC interface for S1AP
class rrc_interface_s1ap
{
public:
virtual void write_dl_info(uint16_t rnti, srslte::unique_byte_buffer_t sdu) = 0;
virtual void release_complete(uint16_t rnti) = 0;
virtual bool setup_ue_ctxt(uint16_t rnti, const asn1::s1ap::init_context_setup_request_s& msg) = 0;
virtual bool modify_ue_ctxt(uint16_t rnti, const asn1::s1ap::ue_context_mod_request_s& msg) = 0;
virtual bool setup_ue_erabs(uint16_t rnti, const asn1::s1ap::erab_setup_request_s& msg) = 0;
virtual bool release_erabs(uint32_t rnti) = 0;
virtual void add_paging_id(uint32_t ueid, const asn1::s1ap::ue_paging_id_c& ue_paging_id) = 0;
/**
* Reports the reception of S1 HandoverCommand / HandoverPreparationFailure or abnormal conditions during
* S1 Handover preparation back to RRC.
*
* @param rnti user
* @param is_success true if ho cmd was received
* @param container TargeteNB RRCConnectionReconfiguration message with MobilityControlInfo
*/
virtual void ho_preparation_complete(uint16_t rnti, bool is_success, srslte::unique_byte_buffer_t container) = 0;
virtual uint16_t
start_ho_ue_resource_alloc(const asn1::s1ap::ho_request_s& msg,
const asn1::s1ap::sourceenb_to_targetenb_transparent_container_s& container,
srslte::byte_buffer_t& ho_cmd,
std::vector<asn1::fixed_octstring<4, true> >& admitted_erabs) = 0;
virtual void set_erab_status(uint16_t rnti, const asn1::s1ap::bearers_subject_to_status_transfer_list_l& erabs) = 0;
};
// GTPU interface for PDCP
class gtpu_interface_pdcp
{
public:
virtual void write_pdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t pdu) = 0;
};
// GTPU interface for RRC
class gtpu_interface_rrc
{
public:
virtual uint32_t add_bearer(uint16_t rnti, uint32_t lcid, uint32_t addr, uint32_t teid_out) = 0;
virtual void rem_bearer(uint16_t rnti, uint32_t lcid) = 0;
virtual void mod_bearer_rnti(uint16_t old_rnti, uint16_t new_rnti) = 0;
virtual void rem_user(uint16_t rnti) = 0;
};
// S1AP interface for RRC
class s1ap_interface_rrc
{
public:
struct bearer_status_info {
uint8_t erab_id;
uint16_t pdcp_dl_sn, pdcp_ul_sn;
uint16_t dl_hfn, ul_hfn;
};
virtual void
initial_ue(uint16_t rnti, asn1::s1ap::rrc_establishment_cause_e cause, srslte::unique_byte_buffer_t pdu) = 0;
virtual void initial_ue(uint16_t rnti,
asn1::s1ap::rrc_establishment_cause_e cause,
srslte::unique_byte_buffer_t pdu,
uint32_t m_tmsi,
uint8_t mmec) = 0;
virtual void write_pdu(uint16_t rnti, srslte::unique_byte_buffer_t pdu) = 0;
virtual bool user_exists(uint16_t rnti) = 0;
virtual void user_mod(uint16_t old_rnti, uint16_t new_rnti) = 0;
virtual bool user_release(uint16_t rnti, asn1::s1ap::cause_radio_network_e cause_radio) = 0;
virtual void ue_ctxt_setup_complete(uint16_t rnti, const asn1::s1ap::init_context_setup_resp_s& res) = 0;
virtual void ue_erab_setup_complete(uint16_t rnti, const asn1::s1ap::erab_setup_resp_s& res) = 0;
virtual bool is_mme_connected() = 0;
/**
* Command the s1ap to transmit a HandoverRequired message to MME.
* This message initiates the S1 handover preparation procedure at the Source eNB
*
* @param rnti user to perform S1 handover
* @param target_eci eNB Id + Cell Id of the target eNB
* @param target_plmn PLMN of the target eNB
* @param rrc_container RRC container with SourceENBToTargetENBTransparentContainer message.
* @return true if successful
*/
virtual bool send_ho_required(uint16_t rnti,
uint32_t target_eci,
srslte::plmn_id_t target_plmn,
srslte::unique_byte_buffer_t rrc_container) = 0;
/**
* Command the s1ap to transmit eNBStatusTransfer message to MME. This message passes the PDCP context of the UE
* performing S1 handover from source eNB to target eNB.
*
* @param rnti user to perform S1 handover
* @param bearer_status_list PDCP SN and HFN status of the bearers to be preserved at target eNB
* @return true if successful
*/
virtual bool send_enb_status_transfer_proc(uint16_t rnti, std::vector<bearer_status_info>& bearer_status_list) = 0;
/**
* Notify MME that Handover is complete
*/
virtual void send_ho_notify(uint16_t rnti, uint64_t target_eci) = 0;
};
// Combined interface for PHY to access stack (MAC and RRC)
class stack_interface_phy_lte : public mac_interface_phy_lte
{
public:
virtual void tti_clock() = 0;
};
// Combined interface for stack (MAC and RRC) to access PHY
class phy_interface_stack_lte : public phy_interface_mac_lte, public phy_interface_rrc_lte
{};
typedef struct {
uint32_t enb_id; // 20-bit id (lsb bits)
uint8_t cell_id; // 8-bit cell id
uint16_t tac; // 16-bit tac
uint16_t mcc; // BCD-coded with 0xF filler
uint16_t mnc; // BCD-coded with 0xF filler
std::string mme_addr;
std::string gtp_bind_addr;
std::string s1c_bind_addr;
std::string enb_name;
} s1ap_args_t;
typedef struct {
uint32_t nof_prb; ///< Needed to dimension MAC softbuffers for all cells
sched_interface::sched_args_t sched;
int nr_tb_size = -1;
} mac_args_t;
class stack_interface_s1ap_lte
{
public:
virtual void add_mme_socket(int fd) = 0;
virtual void remove_mme_socket(int fd) = 0;
};
class stack_interface_gtpu_lte
{
public:
virtual void add_gtpu_s1u_socket_handler(int fd) = 0;
virtual void add_gtpu_m1u_socket_handler(int fd) = 0;
};
} // namespace srsenb
#endif // SRSLTE_ENB_INTERFACES_H