mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
286 lines
12 KiB
Matlab
286 lines
12 KiB
Matlab
%% PDSCH Transmit Diversity Throughput Conformance Test
|
|
% This example demonstrates the throughput performance under conformance
|
|
% test conditions as defined in TS36.101[ <#9 1> ]: single codeword,
|
|
% transmit diversity 4Tx-2Rx with medium correlation, EPA5 (Extended
|
|
% Pedestrian A) channel. The example also introduces the use of Parallel
|
|
% Computing Toolbox(TM) to provide improvements in the simulation time.
|
|
|
|
% Copyright 2009-2013 The MathWorks, Inc.
|
|
|
|
%% Introduction
|
|
% In this example, Hybrid Automatic Repeat Request(HARQ) is used in line
|
|
% with conformance test requirements. A total of 8 HARQ processes are used
|
|
% with a maximum of 4 retransmissions permitted. This example uses the R.12
|
|
% Reference Measurement Channel (RMC).
|
|
%
|
|
% This example also uses <matlab:doc('parfor') parfor> loop instead of the
|
|
% <matlab:doc('for') for> loop for SNR calculation. <matlab:doc('parfor')
|
|
% parfor>, as part of the Parallel Computing Toolbox, executes the SNR loop
|
|
% in parallel to reduce the total simulation time.
|
|
|
|
%% Simulation Settings
|
|
% The default simulation length is set to 10 frames at a number of |SNR|
|
|
% values including 0.2dB (as per TS36.101 (Section 8.2.1.2.2-Test1)[ <#9
|
|
% 1> ]).
|
|
NFrames = 50; % Number of frames
|
|
SNRdB = [4 5 6]; % SNR range
|
|
|
|
% eNodeB Configuration
|
|
enb = struct; % eNodeB config structure
|
|
enb.TotSubframes = 1; % Total subframes RMC will generate
|
|
enb.RC = 'R.10'; % RMC number
|
|
|
|
% Channel Configuration
|
|
channel = struct; % Channel config structure
|
|
channel.Seed = 2; % Random channel seed
|
|
channel.NRxAnts = 1; % 2 receive antennas
|
|
channel.DelayProfile ='EVA'; % Delay profile
|
|
channel.DopplerFreq = 5; % Doppler frequency
|
|
channel.MIMOCorrelation = 'Low'; % Multi-antenna correlation
|
|
channel.NTerms = 16; % Oscillators used in fading model
|
|
channel.ModelType = 'GMEDS'; % Rayleigh fading model type
|
|
channel.InitPhase = 'Random'; % Random initial phases
|
|
channel.NormalizePathGains = 'On'; % Normalize delay profile power
|
|
channel.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
|
|
|
|
% Channel Estimator Configuration
|
|
cec = struct; % Channel estimation config structure
|
|
cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging
|
|
cec.FreqWindow = 9; % Frequency window size
|
|
cec.TimeWindow = 9; % Time window size
|
|
cec.InterpType = 'Linear'; % 2D interpolation type
|
|
cec.InterpWindow = 'Centered'; % Interpolation window type
|
|
cec.InterpWinSize = 1; % Interpolation window size
|
|
|
|
% PDSCH Configuration
|
|
enb.PDSCH.TxScheme = 'TxDiversity'; % Transmission scheme
|
|
enb.PDSCH.RNTI = 1; % 16-bit User Equipment (UE) mask
|
|
enb.PDSCH.Rho = 0; % PDSCH RE power adjustment factor
|
|
enb.PDSCH.CSI = 'Off'; % No CSI scaling of soft bits
|
|
|
|
% Simulation Variables
|
|
totalBLKCRC = []; % Define total block CRC vector
|
|
bitThroughput = []; % Define total bit throughput vector
|
|
|
|
%% System Processing
|
|
% Working on a subframe by subframe basis and using the LTE System
|
|
% Toolbox(TM) a populated resource grid is generated and OFDM modulated to
|
|
% create a transmit waveform. The generated waveform is transmitted through
|
|
% a propagation channel and AWGN is added. Channel estimation, equalization
|
|
% and the inverse of transmission chain are performed at receiver. The
|
|
% throughput performance of the PDSCH is determined using the block CRC
|
|
% result.
|
|
|
|
% Generate the RMC configuration structure for RMC R.12
|
|
rmc = lteRMCDL(enb);
|
|
rvSeq = rmc.PDSCH.RVSeq;
|
|
|
|
% Transport block sizes for each subframe in a frame
|
|
trBlkSizes = rmc.PDSCH.TrBlkSizes;
|
|
codedTrBlkSizes = rmc.PDSCH.CodedTrBlkSizes;
|
|
|
|
% Determine resource grid dimensions
|
|
dims = lteDLResourceGridSize(rmc);
|
|
p = dims(3);
|
|
|
|
% Set up channel model sampling rate
|
|
ofdmInfo = lteOFDMInfo(rmc);
|
|
channel.SamplingRate = ofdmInfo.SamplingRate;
|
|
|
|
% Generation HARQ table for 8-HARQ processes
|
|
harqTable = hHARQTable();
|
|
|
|
% Initializing state of all HARQ processes
|
|
for i=1:9
|
|
harqProcess_init(i) = hTxDiversityNewHARQProcess ...
|
|
(trBlkSizes(i),codedTrBlkSizes(i),rvSeq); %#ok<SAGROW>
|
|
end
|
|
|
|
% Display the SNR points being simulated
|
|
for s=1:numel(SNRdB)
|
|
fprintf('\nSimulating at %gdB SNR for a total %d Frame(s)\n', ...
|
|
SNRdB(s),NFrames);
|
|
end
|
|
|
|
% The temporary variables 'rmc_init' and 'channel_init' are used to create
|
|
% the temporary variables 'rmc' and 'channel' within the SNR loop to create
|
|
% independent simulation loops for the parfor loop
|
|
rmc_init = rmc;
|
|
channel_init = channel;
|
|
|
|
% 'parfor' will default to the normal 'for' when executed without Parallel
|
|
% Computing Toolbox.
|
|
parfor index = 1:numel(SNRdB)
|
|
|
|
% Set the random number generator seed depending to the loop variable
|
|
% to ensure independent random streams
|
|
rng(index,'combRecursive');
|
|
|
|
% Set up variables for the SNR loop
|
|
offsets = 0; % Initialize overall frame offset value for the SNR
|
|
offset = 0; % Initialize frame offset value for the radio frame
|
|
rmc = rmc_init; % Initialize RMC configuration
|
|
channel = channel_init; % Initialize channel configuration
|
|
blkCRC = []; % Define intermediate block CRC vector
|
|
bitTput = []; % Intermediate bit throughput vector
|
|
|
|
% Initializing state of all HARQ processes
|
|
harqProcess = harqProcess_init;
|
|
|
|
for subframeNo = 0:(NFrames*10-1)
|
|
|
|
% Updating subframe number
|
|
rmc.NSubframe = subframeNo;
|
|
|
|
% HARQ index table
|
|
harqIdx = harqTable(mod(subframeNo,length(harqTable))+1); %#ok<PFBNS>
|
|
|
|
% Update HARQ process
|
|
harqProcess(harqIdx) = hTxDiversityHARQScheduling( ...
|
|
harqProcess(harqIdx));
|
|
|
|
% Updating the RV value for correct waveform generation
|
|
rmc.PDSCH.RV = harqProcess(harqIdx).rvSeq ...
|
|
(harqProcess(harqIdx).rvIdx);
|
|
|
|
rmc.PDSCH.RVSeq = harqProcess(harqIdx).rvSeq ...
|
|
(harqProcess(harqIdx).rvIdx);
|
|
|
|
[txWaveform txGrid] = lteRMCDLTool(rmc, ...
|
|
{harqProcess(harqIdx).dlschTransportBlk});
|
|
txWaveform = [txWaveform; zeros(25,p)];
|
|
|
|
% Initialize at time zero
|
|
channel.InitTime = subframeNo/1000;
|
|
|
|
% Pass data through the fading channel model
|
|
rxWaveform = lteFadingChannel(channel,txWaveform);
|
|
|
|
% Noise setup including compensation for downlink power allocation
|
|
SNR = 10^((SNRdB(index)-rmc.PDSCH.Rho)/20); % Linear SNR
|
|
|
|
% Normalize noise power to take account of sampling rate, which is
|
|
% a function of the IFFT size used in OFDM modulation, and the
|
|
% number of antennas
|
|
N0 = 1/(sqrt(2.0*rmc.CellRefP*double(ofdmInfo.Nfft))*SNR);
|
|
|
|
% Create additive white Gaussian noise
|
|
noise = N0*complex(randn(size(rxWaveform)), ...
|
|
randn(size(rxWaveform)));
|
|
|
|
% Add AWGN to the received time domain waveform
|
|
rxWaveform = rxWaveform + noise;
|
|
|
|
% Receiver
|
|
% Perform synchronization
|
|
% An offset within the range of delays expected from the channel
|
|
% modeling(a combination of implementation delay and channel delay
|
|
% spread) indicates success
|
|
if (mod(subframeNo,10)==0)
|
|
[offset] = lteDLFrameOffset(rmc,rxWaveform);
|
|
if (offset > 25)
|
|
offset = offsets(end);
|
|
end
|
|
offsets = [offsets offset];
|
|
end
|
|
rxWaveform = rxWaveform(1+offset:end,:);
|
|
|
|
% Perform OFDM demodulation on the received data to recreate the
|
|
% resource grid
|
|
rxSubframe = lteOFDMDemodulate(rmc,rxWaveform);
|
|
|
|
% Equalization and channel estimation
|
|
[estChannelGrid,noiseEst] = lteDLChannelEstimate(rmc,cec, ...
|
|
rxSubframe);
|
|
|
|
addpath('../../debug/lte/phy/lib/ch_estimation/test')
|
|
[est, ~, output] = liblte_chest(rmc.NCellID,rmc.CellRefP,rxSubframe,[0.25 0.5 0.25],[0.1 0.9],mod(rmc.NSubframe,10));
|
|
|
|
%estChannelGrid=reshape(est,size(estChannelGrid));
|
|
|
|
% Perform deprecoding, layer demapping, demodulation and
|
|
% descrambling on the received data using the estimate of
|
|
% the channel
|
|
rxEncodedBits = ltePDSCHDecode2(rmc,rmc.PDSCH,rxSubframe,estChannelGrid,noiseEst);
|
|
|
|
% Decode DownLink Shared Channel (DL-SCH)
|
|
[decbits,harqProcess(harqIdx).crc,harqProcess(harqIdx).decState] = ...
|
|
lteDLSCHDecode(rmc,rmc.PDSCH,harqProcess(harqIdx).trBlkSize, ...
|
|
rxEncodedBits{1},harqProcess(harqIdx).decState);
|
|
|
|
if(harqProcess(harqIdx).trBlkSize ~= 0)
|
|
blkCRC = [blkCRC harqProcess(harqIdx).crc];
|
|
bitTput = [bitTput harqProcess(harqIdx).trBlkSize.*(1- ...
|
|
harqProcess(harqIdx).crc)];
|
|
end
|
|
end
|
|
% Record the block CRC and bit throughput for the total number of
|
|
% frames simulated at a particular SNR
|
|
totalBLKCRC(index,:) = blkCRC;
|
|
bitThroughput(index,:) = bitTput;
|
|
|
|
end
|
|
%%
|
|
% |totalBLKCRC| is a matrix where each row contains the results of decoding
|
|
% the block CRC for a defined value of SNR. |bitThroughput| is a matrix
|
|
% containing the total number of bits per subframe at the different SNR
|
|
% points that have been successfully received and decoded.
|
|
|
|
%% Results
|
|
|
|
% First graph shows the throughput as total bits per second against the
|
|
% range of SNRs
|
|
% figure;
|
|
% plot(SNRdB,mean(bitThroughput,2),'-*');
|
|
% %axis([-5 3 200 400])
|
|
% title(['Throughput for ', num2str(NFrames) ' frame(s)'] );
|
|
% xlabel('SNRdB'); ylabel('Throughput (kbps)');
|
|
% grid on;
|
|
% hold on;
|
|
% plot(SNRdB,mean([trBlkSizes(1:5) trBlkSizes(7:10)])*0.7*ones ...
|
|
% (1,numel(SNRdB)),'--rs');
|
|
% legend('Simulation Result','70 Percent Throughput','Location','SouthEast');
|
|
%
|
|
% % Second graph shows the total throughput as a percentage of CRC passes
|
|
% % against SNR range
|
|
% figure;
|
|
plot(SNRdB,100*(1-mean(totalBLKCRC,2)),'-*');
|
|
%axis([-5 3 50 110])
|
|
title(['Throughput for ', num2str(NFrames) ' frame(s)'] );
|
|
xlabel('SNRdB'); ylabel('Throughput (%)');
|
|
grid on;
|
|
hold on;
|
|
plot(SNRdB,70*ones(1,numel(SNRdB)),'--rs');
|
|
legend('Simulation Result','70 Percent Throughput','Location','SouthEast');
|
|
|
|
|
|
%% Further Exploration
|
|
%
|
|
% You can modify parts of this example to experiment with different number
|
|
% of |NFrames| and different values of SNR. SNR can be a vector of
|
|
% values or a single value. Following scenarios can be simulated.
|
|
%%
|
|
% * Allows control over the total number of frames to run the demo at an
|
|
% SNR of 0.2dB (as per TS 36.101).
|
|
%
|
|
% * Allows control over the total number of frames to run the demo, as well
|
|
% as defining a set of desired SNR values. |SNRIn| can be a single value
|
|
% or a vector containing a range of values.
|
|
%
|
|
% * For simulations of multiple SNR points over a large number of frames,
|
|
% the use of Parallel Computing Toolbox provides significant improvement in
|
|
% the simulation time. This can be easily verified by changing the |parfor|
|
|
% in the SNR loop to |for| and re-running the example.
|
|
|
|
%% Appendix
|
|
% This example uses the following helper functions:
|
|
%
|
|
% * <matlab:edit('hHARQTable.m') hHARQTable.m>
|
|
% * <matlab:edit('hTxDiversityHARQScheduling.m') hTxDiversityHARQScheduling.m>
|
|
% * <matlab:edit('hTxDiversityNewHARQProcess.m') hTxDiversityNewHARQProcess.m>
|
|
|
|
%% Selected Bibliography
|
|
% # 3GPP TS 36.101
|
|
|
|
displayEndOfDemoMessage(mfilename)
|