You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

268 lines
8.9 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSRAN_TEST_BENCH_H
#define SRSRAN_TEST_BENCH_H
#include "dummy_phy_common.h"
#include "srsenb/hdr/phy/nr/worker_pool.h"
#include "srsran/radio/radio_dummy.h"
#include "srsue/hdr/phy/nr/worker_pool.h"
#include "srsue/hdr/phy/phy_nr_sa.h"
class test_bench
{
private:
const std::string UE_PHY_COM_LOG_NAME = "UE /PHY/COM";
const std::string GNB_PHY_COM_LOG_NAME = "GNB/PHY/COM";
const std::string CHANNEL_LOG_NAME = "CHANNEL";
uint32_t slot_idx = 0;
uint64_t slot_count = 0;
uint64_t duration_slots = 0;
gnb_dummy_stack gnb_stack;
srsenb::nr::worker_pool gnb_phy;
phy_common gnb_phy_com;
ue_dummy_stack ue_stack;
srsue::phy_nr_sa ue_phy;
srsran::radio_dummy ue_radio;
srsran::rf_timestamp_t gnb_rx_time = {};
bool initialised = false;
uint32_t sf_sz = 0;
srsran::rf_buffer_t rf_buffer;
// Channel simulator
srsran::channel dl_channel;
srsran::channel ul_channel;
public:
struct args_t {
double srate_hz = (double)(768 * SRSRAN_SUBC_SPACING_NR(0));
uint32_t nof_channels = 1;
uint32_t buffer_sz_ms = 10;
bool valid = false;
srsran::phy_cfg_nr_t phy_cfg = {};
srsenb::phy_cell_cfg_list_nr_t cell_list = {};
srsenb::nr::worker_pool::args_t gnb_phy;
gnb_dummy_stack::args_t gnb_stack;
srsue::phy_args_nr_t ue_phy;
ue_dummy_stack::args_t ue_stack;
std::string gnb_phy_com_log_level = "info";
std::string ue_radio_log_level = "info";
std::string phy_lib_log_level = "none";
uint64_t durations_slots = 100;
// channel simulator args
srsran::channel::args_t dl_channel;
srsran::channel::args_t ul_channel;
args_t(int argc, char** argv);
};
struct metrics_t {
gnb_dummy_stack::metrics_t gnb_stack = {};
ue_dummy_stack::metrics_t ue_stack = {};
srsue::phy_metrics_t ue_phy = {};
};
test_bench(const args_t& args) :
gnb_stack(args.gnb_stack),
gnb_phy(gnb_phy_com, gnb_stack, srslog::get_default_sink(), args.gnb_phy.nof_phy_threads),
ue_stack(args.ue_stack, ue_phy),
ue_phy("PHY"),
ue_radio(),
gnb_phy_com(phy_common::args_t(args.srate_hz, args.buffer_sz_ms, args.nof_channels),
srslog::fetch_basic_logger(GNB_PHY_COM_LOG_NAME, srslog::get_default_sink(), false)),
sf_sz((uint32_t)std::round(args.srate_hz * 1e-3)),
duration_slots(args.durations_slots),
dl_channel(args.dl_channel, 1, srslog::fetch_basic_logger(CHANNEL_LOG_NAME, srslog::get_default_sink(), false)),
ul_channel(args.ul_channel, 1, srslog::fetch_basic_logger(CHANNEL_LOG_NAME, srslog::get_default_sink(), false)),
rf_buffer(1)
{
srslog::fetch_basic_logger(UE_PHY_COM_LOG_NAME).set_level(srslog::str_to_basic_level(args.gnb_phy_com_log_level));
srslog::fetch_basic_logger(GNB_PHY_COM_LOG_NAME).set_level(srslog::str_to_basic_level(args.gnb_phy_com_log_level));
srslog::fetch_basic_logger(CHANNEL_LOG_NAME).set_level(srslog::basic_levels::error);
if (not gnb_phy.init(args.gnb_phy, args.cell_list)) {
return;
}
srsenb::phy_interface_rrc_nr::common_cfg_t common_cfg = {};
common_cfg.carrier = args.phy_cfg.carrier;
common_cfg.pdcch = args.phy_cfg.pdcch;
common_cfg.prach = args.phy_cfg.prach;
common_cfg.duplex_mode = args.phy_cfg.duplex.mode;
common_cfg.ssb = args.phy_cfg.get_ssb_cfg();
if (gnb_phy.set_common_cfg(common_cfg) < SRSRAN_SUCCESS) {
return;
}
// Initialise radio
srsran::rf_args_t rf_args = {};
rf_args.nof_antennas = 1;
rf_args.nof_carriers = 1;
rf_args.srate_hz = args.srate_hz;
rf_args.log_level = args.ue_radio_log_level;
if (ue_radio.init(rf_args, &ue_phy) != SRSRAN_SUCCESS) {
return;
}
// Initialise UE PHY
if (ue_phy.init(args.ue_phy, &ue_stack, &ue_radio) != SRSRAN_SUCCESS) {
return;
}
// Wait for PHY to initialise
ue_phy.wait_initialize();
// Set UE configuration
if (not ue_phy.set_config(args.phy_cfg)) {
return;
}
// Wait for UE to notify stack that the configuration is completed
ue_stack.wait_phy_config_complete();
// Make sure PHY log is not set by UE or gNb PHY
set_handler_enabled(false);
if (args.phy_lib_log_level == "info") {
set_srsran_verbose_level(SRSRAN_VERBOSE_INFO);
} else if (args.phy_lib_log_level == "debug") {
set_srsran_verbose_level(SRSRAN_VERBOSE_DEBUG);
} else {
set_srsran_verbose_level(SRSRAN_VERBOSE_NONE);
}
// Configure channel
dl_channel.set_srate((uint32_t)args.srate_hz);
ul_channel.set_srate((uint32_t)args.srate_hz);
initialised = true;
}
srsue::rrc_interface_phy_nr::cell_select_result_t run_cell_select(const srsran_carrier_nr_t& carrier,
const srsran_ssb_cfg_t& ssb_cfg)
{
// Prepare return value
srsue::rrc_interface_phy_nr::cell_select_result_t ret = {};
// Prepare cell selection arguments
srsue::phy_interface_rrc_nr::cell_select_args_t cs_args = {};
cs_args.carrier = carrier;
cs_args.ssb_cfg = ssb_cfg;
// Start cell selection procedure
if (not ue_phy.start_cell_select(cs_args)) {
// Return unsuccessful cell select result
return {};
}
// Run test bench until the cell selection is completed
while (not ue_stack.get_cell_select_finished()) {
run_tti();
}
// It is now the right time to start scheduling
gnb_stack.start_scheduling();
// Reset slot counting
slot_count = 0;
return ue_stack.get_cell_select_result();
}
void stop()
{
ue_stack.stop();
ue_radio.stop();
gnb_phy_com.stop();
gnb_phy.stop();
ue_phy.stop();
gnb_stack.stop();
}
~test_bench() = default;
bool is_initialised()
{
return ue_stack.is_valid() and ue_radio.is_init() and ue_phy.is_initialized() and gnb_stack.is_valid() and
initialised;
}
bool run_tti()
{
// Get gNb worker
srsenb::nr::slot_worker* gnb_worker = gnb_phy.wait_worker(slot_idx);
if (gnb_worker == nullptr) {
return false;
}
// Feed gNb the UE transmitted signal
std::vector<cf_t*> gnb_rx_buffers(1);
gnb_rx_buffers[0] = gnb_worker->get_buffer_rx(0);
ue_radio.read_tx(gnb_rx_buffers.data(), sf_sz);
// Run the UL channel simulator
ul_channel.run(gnb_rx_buffers.data(), gnb_rx_buffers.data(), (uint32_t)sf_sz, gnb_rx_time.get(0));
// Set gNb TX time
srsran::rf_timestamp_t gnb_time = gnb_rx_time;
gnb_time.add(TX_ENB_DELAY * 1e-3);
// Advance gNb Rx time
gnb_rx_time.add(1e-3);
// Set gNb context
srsran::phy_common_interface::worker_context_t gnb_context;
gnb_context.sf_idx = slot_idx;
gnb_context.worker_ptr = gnb_worker;
gnb_context.last = true; // Set last if standalone
gnb_context.tx_time.copy(gnb_time);
gnb_worker->set_context(gnb_context);
// Start gNb work
gnb_phy_com.push_semaphore(gnb_worker);
gnb_phy.start_worker(gnb_worker);
// Feed UE the gNb transmitted signal
srsran::rf_timestamp_t ue_time = {};
std::vector<cf_t*> ue_rx_buffers(1);
ue_rx_buffers[0] = rf_buffer.get(0);
gnb_phy_com.read(ue_rx_buffers, sf_sz, ue_time);
// Run the DL channel simulator
dl_channel.run(ue_rx_buffers.data(), ue_rx_buffers.data(), (uint32_t)sf_sz, ue_time.get(0));
// Write signal in UE radio buffer, this triggers UE to work
ue_radio.write_rx(ue_rx_buffers.data(), sf_sz);
// Throttle UE PHY by running stack tick
ue_stack.tick();
// Increment slot index, the slot index shall be continuous
slot_idx = (slot_idx + 1) % (1024 * SRSRAN_NSLOTS_PER_FRAME_NR(srsran_subcarrier_spacing_15kHz));
// Increment slot counter and determine end of execution
slot_count++;
return slot_count <= duration_slots;
}
metrics_t get_metrics()
{
metrics_t metrics = {};
metrics.gnb_stack = gnb_stack.get_metrics();
metrics.ue_stack = ue_stack.get_metrics();
ue_phy.get_metrics(srsran::srsran_rat_t::nr, &metrics.ue_phy); // get the metrics from the ue_phy
return metrics;
}
};
#endif // SRSRAN_TEST_BENCH_H