You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

252 lines
7.3 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_BUFFER_POOL_H
#define SRSRAN_BUFFER_POOL_H
#include "byte_buffer.h"
#include <algorithm>
#include <map>
#include <pthread.h>
#include <stack>
#include <string>
#include <vector>
/*******************************************************************************
INCLUDES
*******************************************************************************/
#include "srsran/common/common.h"
#include "srsran/srslog/srslog.h"
namespace srsran {
/******************************************************************************
* Buffer pool
*
* Preallocates a large number of buffer_t and provides allocate and
* deallocate functions. Provides quick object creation and deletion as well
* as object reuse.
* Singleton class of byte_buffer_t (but other pools of different type can be created)
*****************************************************************************/
template <class buffer_t>
class buffer_pool
{
public:
// non-static methods
buffer_pool(int capacity_ = -1)
{
uint32_t nof_buffers = POOL_SIZE;
if (capacity_ > 0) {
nof_buffers = (uint32_t)capacity_;
}
used.reserve(nof_buffers);
pthread_mutex_init(&mutex, nullptr);
pthread_cond_init(&cv_not_empty, nullptr);
for (uint32_t i = 0; i < nof_buffers; i++) {
buffer_t* b = new (std::nothrow) buffer_t;
if (!b) {
perror("Error allocating memory. Exiting...\n");
exit(-1);
}
available.push(b);
}
capacity = nof_buffers;
}
~buffer_pool()
{
// this destructor assumes all buffers have been properly deallocated
while (available.size()) {
delete available.top();
available.pop();
}
for (uint32_t i = 0; i < used.size(); i++) {
delete used[i];
}
pthread_cond_destroy(&cv_not_empty);
pthread_mutex_destroy(&mutex);
}
void print_all_buffers()
{
printf("%d buffers in queue\n", (int)used.size());
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
std::map<std::string, uint32_t> buffer_cnt;
for (uint32_t i = 0; i < used.size(); i++) {
buffer_cnt[strlen(used[i]->debug_name) ? used[i]->debug_name : "Undefined"]++;
}
std::map<std::string, uint32_t>::iterator it;
for (it = buffer_cnt.begin(); it != buffer_cnt.end(); it++) {
printf(" - %dx %s\n", it->second, it->first.c_str());
}
#endif
}
uint32_t nof_available_pdus() { return available.size(); }
bool is_almost_empty() { return available.size() < capacity / 20; }
buffer_t* allocate(const char* debug_name = nullptr, bool blocking = false)
{
pthread_mutex_lock(&mutex);
buffer_t* b = nullptr;
if (available.size() > 0) {
b = available.top();
used.push_back(b);
available.pop();
if (is_almost_empty()) {
printf("Warning buffer pool capacity is %f %%\n", (float)100 * available.size() / capacity);
}
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
if (debug_name) {
strncpy(b->debug_name, debug_name, SRSRAN_BUFFER_POOL_LOG_NAME_LEN);
b->debug_name[SRSRAN_BUFFER_POOL_LOG_NAME_LEN - 1] = 0;
}
#endif
} else if (blocking) {
// blocking allocation
while (available.size() == 0) {
pthread_cond_wait(&cv_not_empty, &mutex);
}
// retrieve the new buffer
b = available.top();
used.push_back(b);
available.pop();
// do not print any warning
} else {
printf("Error - buffer pool is empty\n");
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
print_all_buffers();
#endif
}
pthread_mutex_unlock(&mutex);
return b;
}
bool deallocate(buffer_t* b)
{
bool ret = false;
pthread_mutex_lock(&mutex);
typename std::vector<buffer_t*>::iterator elem = std::find(used.begin(), used.end(), b);
if (elem != used.end()) {
used.erase(elem);
available.push(b);
ret = true;
}
pthread_cond_signal(&cv_not_empty);
pthread_mutex_unlock(&mutex);
return ret;
}
private:
static const int POOL_SIZE = 4096;
std::stack<buffer_t*> available;
std::vector<buffer_t*> used;
pthread_mutex_t mutex;
pthread_cond_t cv_not_empty;
uint32_t capacity;
};
class byte_buffer_pool
{
using mem_chunk = typename std::aligned_storage<sizeof(byte_buffer_t), alignof(byte_buffer_t)>::type;
public:
// Singleton static methods
static byte_buffer_pool* get_instance(int capacity = -1)
{
static std::unique_ptr<byte_buffer_pool> instance(new byte_buffer_pool(capacity));
return instance.get();
}
byte_buffer_pool(int capacity = -1) : pool(capacity) {}
byte_buffer_pool(const byte_buffer_pool& other) = delete;
byte_buffer_pool(byte_buffer_pool&& other) = delete;
byte_buffer_pool& operator=(const byte_buffer_pool& other) = delete;
byte_buffer_pool& operator=(byte_buffer_pool&& other) = delete;
void* allocate(const char* debug_name = nullptr, bool blocking = false)
{
return pool.allocate(debug_name, blocking);
}
void enable_logger(bool enabled) { print_to_log = enabled; }
void deallocate(void* b)
{
if (!b) {
return;
}
if (!pool.deallocate(static_cast<mem_chunk*>(b))) {
#ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED
print_error("Error deallocating PDU: Addr=0x%p, name=%s not found in pool", (void*)b, b->debug_name);
#else
print_error("Error deallocating PDU: Addr=0x%p", (void*)b);
#endif
}
}
void print_all_buffers() { pool.print_all_buffers(); }
private:
/// Formats and prints the input string and arguments into the configured output stream.
template <typename... Args>
void print_error(const char* str, Args&&... args)
{
if (print_to_log) {
srslog::fetch_basic_logger("POOL", false).error(str, std::forward<Args>(args)...);
} else {
fmt::printf(std::string(str) + "\n", std::forward<Args>(args)...);
}
}
private:
bool print_to_log = false;
buffer_pool<mem_chunk> pool;
};
inline unique_byte_buffer_t make_byte_buffer() noexcept
{
return std::unique_ptr<byte_buffer_t>(new (std::nothrow) byte_buffer_t());
}
inline unique_byte_buffer_t make_byte_buffer(uint32_t size, uint8_t value) noexcept
{
return std::unique_ptr<byte_buffer_t>(new (std::nothrow) byte_buffer_t(size, value));
}
inline unique_byte_buffer_t make_byte_buffer(const char* debug_ctxt) noexcept
{
std::unique_ptr<byte_buffer_t> buffer(new (std::nothrow) byte_buffer_t());
if (buffer == nullptr) {
srslog::fetch_basic_logger("POOL").error("Failed to allocate byte buffer in %s", debug_ctxt);
}
return buffer;
}
} // namespace srsran
#endif // SRSRAN_BUFFER_POOL_H