You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsenb/test/mac/scheduler_test_common.cc

1071 lines
41 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "scheduler_test_common.h"
#include "srsenb/hdr/stack/mac/scheduler.h"
#include "srsenb/hdr/stack/upper/common_enb.h"
#include "srslte/mac/pdu.h"
#include "srslte/common/test_common.h"
#include <set>
using namespace srsenb;
/***************************
* Random Utils
**************************/
std::default_random_engine rand_gen;
float ::srsenb::randf()
{
static std::uniform_real_distribution<float> unif_dist(0, 1.0);
return unif_dist(rand_gen);
}
void ::srsenb::set_randseed(uint64_t seed)
{
rand_gen = std::default_random_engine(seed);
}
std::default_random_engine& ::srsenb::get_rand_gen()
{
return rand_gen;
}
/***************************
* Sched Testers
**************************/
int output_sched_tester::test_pusch_collisions(const tti_params_t& tti_params,
const sched_interface::ul_sched_res_t& ul_result,
prbmask_t& ul_allocs) const
{
uint32_t nof_prb = cell_params.nof_prb();
ul_allocs.resize(nof_prb);
ul_allocs.reset();
auto try_ul_fill = [&](prb_interval alloc, const char* ch_str, bool strict = true) {
CONDERROR(alloc.stop > nof_prb, "Allocated RBs %s out-of-bounds\n", alloc.to_string().c_str());
CONDERROR(alloc.is_empty(), "Allocations must have at least one PRB\n");
if (strict and ul_allocs.any(alloc.start, alloc.stop)) {
TESTERROR("Collision Detected of %s alloc=%s and cumulative_mask=0x%s\n",
ch_str,
alloc.to_string().c_str(),
ul_allocs.to_hex().c_str());
}
ul_allocs.fill(alloc.start, alloc.stop, true);
return SRSLTE_SUCCESS;
};
/* TEST: Check if there is space for PRACH */
bool is_prach_tti_tx_ul =
srslte_prach_tti_opportunity_config_fdd(cell_params.cfg.prach_config, tti_params.tti_tx_ul, -1);
if (is_prach_tti_tx_ul) {
try_ul_fill({cell_params.cfg.prach_freq_offset, cell_params.cfg.prach_freq_offset + 6}, "PRACH");
}
/* TEST: check collisions in PUCCH */
bool strict = nof_prb != 6 or (not is_prach_tti_tx_ul); // and not tti_data.ul_pending_msg3_present);
try_ul_fill({0, (uint32_t)cell_params.cfg.nrb_pucch}, "PUCCH", strict);
try_ul_fill({cell_params.cfg.cell.nof_prb - cell_params.cfg.nrb_pucch, (uint32_t)cell_params.cfg.cell.nof_prb},
"PUCCH",
strict);
/* TEST: check collisions in the UL PUSCH */
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
uint32_t L, RBstart;
srslte_ra_type2_from_riv(ul_result.pusch[i].dci.type2_alloc.riv, &L, &RBstart, nof_prb, nof_prb);
strict = ul_result.pusch[i].needs_pdcch or nof_prb != 6; // Msg3 may collide with PUCCH at PRB==6
try_ul_fill({RBstart, RBstart + L}, "PUSCH", strict);
// ue_stats[ul_result.pusch[i].dci.rnti].nof_ul_rbs += L;
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_pdsch_collisions(const tti_params_t& tti_params,
const sched_interface::dl_sched_res_t& dl_result,
rbgmask_t& rbgmask) const
{
srslte::bounded_bitset<100, true> dl_allocs(cell_params.cfg.cell.nof_prb), alloc_mask(cell_params.cfg.cell.nof_prb);
auto try_dl_mask_fill = [&](const srslte_dci_dl_t& dci, const char* channel) {
if (extract_dl_prbmask(cell_params.cfg.cell, dci, &alloc_mask) != SRSLTE_SUCCESS) {
return SRSLTE_ERROR;
}
if ((dl_allocs & alloc_mask).any()) {
TESTERROR("Detected collision in the DL %s allocation (%s intersects %s)\n",
channel,
dl_allocs.to_string().c_str(),
alloc_mask.to_string().c_str());
}
dl_allocs |= alloc_mask;
return SRSLTE_SUCCESS;
};
// Decode BC allocations, check collisions, and fill cumulative mask
for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) {
TESTASSERT(try_dl_mask_fill(dl_result.bc[i].dci, "BC") == SRSLTE_SUCCESS);
}
// Decode RAR allocations, check collisions, and fill cumulative mask
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
TESTASSERT(try_dl_mask_fill(dl_result.rar[i].dci, "RAR") == SRSLTE_SUCCESS);
}
// forbid Data in DL if it conflicts with PRACH for PRB==6
if (cell_params.cfg.cell.nof_prb == 6) {
uint32_t tti_rx_ack = tti_params.tti_rx_ack_dl();
if (srslte_prach_tti_opportunity_config_fdd(cell_params.cfg.prach_config, tti_rx_ack, -1)) {
dl_allocs.fill(0, dl_allocs.size());
}
}
// Decode Data allocations, check collisions and fill cumulative mask
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
TESTASSERT(try_dl_mask_fill(dl_result.data[i].dci, "data") == SRSLTE_SUCCESS);
}
// TEST: check for holes in the PRB mask (RBGs not fully filled)
rbgmask.resize(cell_params.nof_rbgs);
rbgmask.reset();
srslte::bounded_bitset<100, true> rev_alloc = ~dl_allocs;
for (uint32_t i = 0; i < cell_params.nof_rbgs; ++i) {
uint32_t lim = SRSLTE_MIN((i + 1) * cell_params.P, dl_allocs.size());
bool val = dl_allocs.any(i * cell_params.P, lim);
CONDERROR(rev_alloc.any(i * cell_params.P, lim) and val, "No holes can be left in an RBG\n");
if (val) {
rbgmask.set(i);
}
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_sib_scheduling(const tti_params_t& tti_params,
const sched_interface::dl_sched_res_t& dl_result) const
{
uint32_t sfn = tti_params.sfn_tx_dl;
uint32_t sf_idx = tti_params.sf_idx_tx_dl;
bool sib1_present = ((sfn % 2) == 0) and sf_idx == 5;
using bc_elem = const sched_interface::dl_sched_bc_t;
bc_elem* bc_begin = &dl_result.bc[0];
bc_elem* bc_end = &dl_result.bc[dl_result.nof_bc_elems];
/* Test if SIB1 was correctly scheduled */
if (sib1_present) {
auto it = std::find_if(bc_begin, bc_end, [](bc_elem& elem) { return elem.index == 0; });
CONDERROR(it == bc_end, "Failed to allocate SIB1 in even sfn, sf_idx==5\n");
}
/* Test if any SIB was scheduled with wrong index, tbs, or outside of its window */
for (bc_elem* bc = bc_begin; bc != bc_end; ++bc) {
if (bc->index == 0) {
continue;
}
CONDERROR(bc->index >= sched_interface::MAX_SIBS, "Invalid SIB idx=%d\n", bc->index + 1);
CONDERROR(bc->tbs < cell_params.cfg.sibs[bc->index].len,
"Allocated BC process with TBS=%d < sib_len=%d\n",
bc->tbs,
cell_params.cfg.sibs[bc->index].len);
uint32_t x = (bc->index - 1) * cell_params.cfg.si_window_ms;
uint32_t sf = x % 10;
uint32_t sfn_start = sfn;
while ((sfn_start % cell_params.cfg.sibs[bc->index].period_rf) != x / 10) {
sfn_start--;
}
uint32_t win_start = sfn_start * 10 + sf;
uint32_t win_end = win_start + cell_params.cfg.si_window_ms;
CONDERROR(tti_params.tti_tx_dl < win_start or tti_params.tti_tx_dl > win_end,
"Scheduled SIB is outside of its SIB window\n");
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_pdcch_collisions(const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result,
srslte::bounded_bitset<128, true>* used_cce) const
{
used_cce->resize(srslte_regs_pdcch_ncce(cell_params.regs.get(), dl_result.cfi));
used_cce->reset();
// Helper Function: checks if there is any collision. If not, fills the PDCCH mask
auto try_cce_fill = [&](const srslte_dci_location_t& dci_loc, const char* ch) {
uint32_t cce_start = dci_loc.ncce, cce_stop = dci_loc.ncce + (1u << dci_loc.L);
if (used_cce->any(cce_start, cce_stop)) {
TESTERROR("%s DCI collision between CCE positions (%u, %u)\n", ch, cce_start, cce_stop);
}
used_cce->fill(cce_start, cce_stop);
return SRSLTE_SUCCESS;
};
/* TEST: verify there are no dci collisions for UL, DL data, BC, RAR */
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
const auto& pusch = ul_result.pusch[i];
if (not pusch.needs_pdcch) {
// In case of non-adaptive retx or Msg3
continue;
}
try_cce_fill(pusch.dci.location, "UL");
}
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
try_cce_fill(dl_result.data[i].dci.location, "DL data");
}
for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) {
try_cce_fill(dl_result.bc[i].dci.location, "DL BC");
}
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
try_cce_fill(dl_result.rar[i].dci.location, "DL RAR");
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_dci_values_consistency(const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result) const
{
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
const auto& pusch = ul_result.pusch[i];
CONDERROR(pusch.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", pusch.tbs);
// CONDERROR(ue_db.count(pusch.dci.rnti) == 0, "The allocated rnti=0x%x does not exist\n", pusch.dci.rnti);
if (not pusch.needs_pdcch) {
// In case of non-adaptive retx or Msg3
continue;
}
CONDERROR(pusch.dci.location.L == 0,
"Invalid aggregation level %d\n",
pusch.dci.location.L); // TODO: Extend this test
}
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
auto& data = dl_result.data[i];
CONDERROR(data.tbs[0] == 0, "Allocated DL data has empty TBS\n");
}
for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) {
auto& bc = dl_result.bc[i];
if (bc.type == sched_interface::dl_sched_bc_t::BCCH) {
CONDERROR(bc.tbs < cell_params.cfg.sibs[bc.index].len,
"Allocated BC process with TBS=%d < sib_len=%d\n",
bc.tbs,
cell_params.cfg.sibs[bc.index].len);
} else if (bc.type == sched_interface::dl_sched_bc_t::PCCH) {
CONDERROR(bc.tbs == 0, "Allocated paging process with invalid TBS=%d\n", bc.tbs);
} else {
TESTERROR("Invalid broadcast process id=%d\n", (int)bc.type);
}
}
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
const auto& rar = dl_result.rar[i];
CONDERROR(rar.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", rar.tbs);
}
return SRSLTE_SUCCESS;
}
int output_sched_tester::test_all(const tti_params_t& tti_params,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result) const
{
prbmask_t ul_allocs;
TESTASSERT(test_pusch_collisions(tti_params, ul_result, ul_allocs) == SRSLTE_SUCCESS);
rbgmask_t dl_mask;
TESTASSERT(test_pdsch_collisions(tti_params, dl_result, dl_mask) == SRSLTE_SUCCESS);
TESTASSERT(test_sib_scheduling(tti_params, dl_result) == SRSLTE_SUCCESS);
srslte::bounded_bitset<128, true> used_cce;
TESTASSERT(test_pdcch_collisions(dl_result, ul_result, &used_cce) == SRSLTE_SUCCESS);
return SRSLTE_SUCCESS;
}
/***********************
* User State Tester
***********************/
ue_ctxt_test::ue_ctxt_test(uint16_t rnti_,
uint32_t preamble_idx_,
srslte::tti_point prach_tti_,
const ue_ctxt_test_cfg& cfg_,
const std::vector<srsenb::sched::cell_cfg_t>& cell_params_) :
sim_cfg(cfg_),
rnti(rnti_),
prach_tti(prach_tti_),
preamble_idx(preamble_idx_),
cell_params(cell_params_),
current_tti_rx(prach_tti_)
{
set_cfg(cfg_.ue_cfg);
}
int ue_ctxt_test::set_cfg(const sched::ue_cfg_t& ue_cfg_)
{
for (uint32_t ue_cc_idx = 0; ue_cc_idx < ue_cfg_.supported_cc_list.size(); ++ue_cc_idx) {
const auto& cc = ue_cfg_.supported_cc_list[ue_cc_idx];
if (ue_cc_idx >= active_ccs.size()) {
// new cell
active_ccs.emplace_back();
active_ccs.back().ue_cc_idx = active_ccs.size() - 1;
active_ccs.back().enb_cc_idx = cc.enb_cc_idx;
for (size_t i = 0; i < active_ccs.back().dl_harqs.size(); ++i) {
active_ccs.back().dl_harqs[i].pid = i;
active_ccs.back().ul_harqs[i].pid = i;
}
} else {
CONDERROR(cc.enb_cc_idx != active_ccs[ue_cc_idx].enb_cc_idx, "changing ccs not supported\n");
}
}
user_cfg = ue_cfg_;
return SRSLTE_SUCCESS;
}
ue_ctxt_test::cc_ue_ctxt_test* ue_ctxt_test::get_cc_state(uint32_t enb_cc_idx)
{
auto it = std::find_if(active_ccs.begin(), active_ccs.end(), [enb_cc_idx](const cc_ue_ctxt_test& c) {
return c.enb_cc_idx == enb_cc_idx;
});
return it == active_ccs.end() ? nullptr : &(*it);
}
int ue_ctxt_test::new_tti(sched* sched_ptr, srslte::tti_point tti_rx)
{
current_tti_rx = tti_rx;
TESTASSERT(fwd_pending_acks(sched_ptr) == SRSLTE_SUCCESS);
if (sim_cfg.periodic_cqi and (tti_rx.to_uint() % sim_cfg.cqi_Npd) == sim_cfg.cqi_Noffset) {
for (auto& cc : active_ccs) {
sched_ptr->dl_cqi_info(
tti_rx.to_uint(), rnti, cc.enb_cc_idx, std::uniform_int_distribution<uint32_t>{5, 24}(get_rand_gen()));
sched_ptr->ul_cqi_info(
tti_rx.to_uint(), rnti, cc.enb_cc_idx, std::uniform_int_distribution<uint32_t>{5, 24}(get_rand_gen()), 0);
}
}
return SRSLTE_SUCCESS;
}
int ue_ctxt_test::fwd_pending_acks(sched* sched_ptr)
{
/* Ack DL HARQs */
// Checks:
// - Pending DL ACK {cc_idx,rnti,tb} exist in scheduler harqs
// - Pending DL ACK tti_ack correspond to the expected based on tti_tx_dl
while (not pending_dl_acks.empty()) {
auto& p = pending_dl_acks.top();
if (p.tti_ack > current_tti_rx) {
break;
}
auto& h = active_ccs[p.ue_cc_idx].dl_harqs[p.pid];
CONDERROR(not h.active, "The ACKed DL Harq pid=%d is not active\n", h.pid);
CONDERROR(h.tti_tx + FDD_HARQ_DELAY_UL_MS != p.tti_ack, "dl ack hasn't arrived when expected\n");
CONDERROR(sched_ptr->dl_ack_info(current_tti_rx.to_uint(), rnti, p.cc_idx, p.tb, p.ack) <= 0,
"The ACKed DL Harq pid=%d does not exist.\n",
p.pid);
if (p.ack) {
h.active = false;
log_h->info("DL ACK tti=%u rnti=0x%x pid=%d\n", current_tti_rx.to_uint(), rnti, p.pid);
}
pending_dl_acks.pop();
}
/* Ack UL HARQs */
while (not pending_ul_acks.empty()) {
auto& p = pending_ul_acks.top();
if (p.tti_ack > current_tti_rx) {
break;
}
auto& h = active_ccs[p.ue_cc_idx].ul_harqs[p.pid];
CONDERROR(not h.active, "The ACKed UL Harq pid=%d is not active\n", h.pid);
CONDERROR(h.tti_tx != p.tti_ack, "UL CRC wasn't set when expected\n");
CONDERROR(sched_ptr->ul_crc_info(current_tti_rx.to_uint(), rnti, p.cc_idx, p.ack) != SRSLTE_SUCCESS,
"Failed UL ACK\n");
if (p.ack) {
h.active = false;
log_h->info("UL ACK tti=%u rnti=0x%x pid=%d\n", current_tti_rx.to_uint(), rnti, p.pid);
}
pending_ul_acks.pop();
}
return SRSLTE_SUCCESS;
}
int ue_ctxt_test::test_sched_result(uint32_t enb_cc_idx,
const sched::dl_sched_res_t& dl_result,
const sched::ul_sched_res_t& ul_result)
{
cc_result result{enb_cc_idx, &dl_result, &ul_result};
TESTASSERT(test_harqs(result) == SRSLTE_SUCCESS);
TESTASSERT(test_ra(result) == SRSLTE_SUCCESS);
TESTASSERT(test_scell_activation(result) == SRSLTE_SUCCESS);
TESTASSERT(schedule_acks(result) == SRSLTE_SUCCESS);
return SRSLTE_SUCCESS;
}
/**
* Tests whether the RAR and Msg3 were scheduled within the expected windows. Individual tests:
* - No UL allocs before Msg3
* - No DL data allocs before Msg3 is correctly ACKed
* - RAR alloc falls within RAR window and is unique per user
* - Msg3 is allocated in expected TTI, without PDCCH, and correct rnti
* - First Data allocation happens after Msg3, and contains a ConRes
* - No RARs are allocated with wrong enb_cc_idx, preamble_idx or wrong user
* TODO:
* - check Msg3 PRBs match the ones advertised in the RAR
*/
int ue_ctxt_test::test_ra(cc_result result)
{
if (result.enb_cc_idx != active_ccs[0].enb_cc_idx) {
// only check for RAR/Msg3 presence for a UE's PCell
return SRSLTE_SUCCESS;
}
/* TEST: RAR allocation */
uint32_t rar_win_size = cell_params[result.enb_cc_idx].prach_rar_window;
std::array<srslte::tti_point, 2> rar_window = {prach_tti + 3, prach_tti + 3 + rar_win_size};
srslte::tti_point tti_tx_dl = srslte::to_tx_dl(current_tti_rx);
srslte::tti_point tti_tx_ul = srslte::to_tx_ul(current_tti_rx);
bool is_in_rar_window = tti_tx_dl >= rar_window[0] and tti_tx_dl <= rar_window[1];
if (not is_in_rar_window) {
CONDERROR(not rar_tti.is_valid() and tti_tx_dl > rar_window[1],
"rnti=0x%x RAR not scheduled within the RAR Window\n",
rnti);
for (uint32_t i = 0; i < result.dl_result->nof_rar_elems; ++i) {
CONDERROR(result.dl_result->rar[i].dci.rnti == rnti, "No RAR allocations allowed outside of user RAR window\n");
}
} else {
// Inside RAR window
for (uint32_t i = 0; i < result.dl_result->nof_rar_elems; ++i) {
for (uint32_t j = 0; j < result.dl_result->rar[i].nof_grants; ++j) {
const auto& data = result.dl_result->rar[i].msg3_grant[j].data;
if (data.prach_tti == (uint32_t)prach_tti.to_uint() and data.preamble_idx == preamble_idx) {
CONDERROR(rar_tti.is_valid(), "There was more than one RAR for the same user\n");
CONDERROR(rnti != data.temp_crnti, "RAR grant C-RNTI does not match the expected.\n");
msg3_riv = result.dl_result->rar[i].msg3_grant[j].grant.rba;
rar_tti = tti_tx_dl;
}
}
}
}
/* TEST: Check Msg3 */
if (rar_tti.is_valid() and not msg3_tti.is_valid()) {
// RAR scheduled, Msg3 not yet scheduled
srslte::tti_point expected_msg3_tti = rar_tti + FDD_HARQ_DELAY_DL_MS + MSG3_DELAY_MS;
CONDERROR(expected_msg3_tti < tti_tx_ul and not msg3_tti.is_valid(), "No UL msg3 alloc was made\n");
if (expected_msg3_tti == tti_tx_ul) {
// Msg3 should exist
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
if (result.ul_result->pusch[i].dci.rnti == rnti) {
CONDERROR(msg3_tti.is_valid(), "Only one Msg3 allowed per user\n");
CONDERROR(result.ul_result->pusch[i].needs_pdcch, "Msg3 allocations do not require PDCCH\n");
CONDERROR(msg3_riv != result.ul_result->pusch[i].dci.type2_alloc.riv,
"The Msg3 was not allocated in the expected PRBs.\n");
msg3_tti = tti_tx_ul;
}
}
}
}
/* TEST: Check Msg4 */
if (msg3_tti.is_valid() and not msg4_tti.is_valid()) {
// Msg3 scheduled, but Msg4 not yet scheduled
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
if (result.dl_result->data[i].dci.rnti == rnti) {
CONDERROR(current_tti_rx < msg3_tti, "Msg4 cannot be scheduled without Msg3 being tx\n");
for (uint32_t j = 0; j < result.dl_result->data[i].nof_pdu_elems[0]; ++j) {
if (result.dl_result->data[i].pdu[0][j].lcid == (uint32_t)srslte::dl_sch_lcid::CON_RES_ID) {
// ConRes found
CONDERROR(result.dl_result->data[i].dci.format != SRSLTE_DCI_FORMAT1, "ConRes must be format1\n");
CONDERROR(msg4_tti.is_valid(), "Duplicate ConRes CE for the same rnti\n");
msg4_tti = tti_tx_dl;
}
}
}
}
}
/* TEST: Txs out of place */
if (not msg4_tti.is_valid()) {
// Msg4 not yet received by user
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
CONDERROR(result.dl_result->data[i].dci.rnti == rnti, "No DL data allocs allowed before Msg4 is scheduled\n");
}
if (msg3_tti.is_valid() and msg3_tti != tti_tx_ul) {
// Msg3 scheduled. No UL alloc allowed unless it is a newtx (the Msg3 itself)
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
// Needs PDCCH - filters out UL retxs
bool msg3_retx = ((tti_tx_ul - msg3_tti) % (FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS)) == 0;
CONDERROR(result.ul_result->pusch[i].dci.rnti == rnti and not msg3_retx,
"No UL txs allowed except for Msg3 before user received Msg4\n");
}
} else if (not msg3_tti.is_valid()) {
// No Msg3 sched TTI
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
CONDERROR(result.ul_result->pusch[i].dci.rnti == rnti, "No UL newtxs allowed before user received Msg4\n");
}
}
}
return SRSLTE_SUCCESS;
}
/**
* Tests whether the SCells are correctly activated. Individual tests:
* - no DL and UL allocations in inactive carriers
*/
int ue_ctxt_test::test_scell_activation(cc_result result)
{
auto cc_it =
std::find_if(user_cfg.supported_cc_list.begin(),
user_cfg.supported_cc_list.end(),
[&result](const sched::ue_cfg_t::cc_cfg_t& cc) { return cc.enb_cc_idx == result.enb_cc_idx; });
if (cc_it == user_cfg.supported_cc_list.end() or not cc_it->active) {
// cell not active. Ensure data allocations are not made
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
CONDERROR(result.dl_result->data[i].dci.rnti == rnti, "Allocated user in inactive carrier\n");
}
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
CONDERROR(result.ul_result->pusch[i].dci.rnti == rnti, "Allocated user in inactive carrier\n");
}
} else {
uint32_t ue_cc_idx = std::distance(user_cfg.supported_cc_list.begin(), cc_it);
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
if (result.dl_result->data[i].dci.rnti == rnti) {
CONDERROR(result.dl_result->data[i].dci.ue_cc_idx != ue_cc_idx, "User cell index was incorrectly set\n");
}
}
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
if (result.ul_result->pusch[i].dci.rnti == rnti) {
CONDERROR(result.ul_result->pusch[i].dci.ue_cc_idx != ue_cc_idx, "The user cell index was incorrectly set\n");
}
}
}
return SRSLTE_SUCCESS;
}
/**
* Sanity checks of the DCI values in the scheduling result for a given user. Current checks:
* - invalid ue_cc_idx<->enb_cc_idx matching in dl_result
* - reusing same pid too early (ACK still didn't arrive yet)
* - invalid rv value (nof retxs is incorrect) and ndi value
*/
int ue_ctxt_test::test_harqs(cc_result result)
{
cc_ue_ctxt_test* cc = get_cc_state(result.enb_cc_idx);
if (cc == nullptr) {
// unsupported carrier
return SRSLTE_SUCCESS;
}
/* Test DL Harqs */
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
const auto& data = result.dl_result->data[i];
if (data.dci.rnti != rnti) {
continue;
}
CONDERROR(data.dci.ue_cc_idx != cc->ue_cc_idx, "invalid ue_cc_idx=%d in sched result\n", data.dci.ue_cc_idx);
CONDERROR(data.dci.pid >= cc->dl_harqs.size(), "invalid pid\n");
auto& h = cc->dl_harqs[data.dci.pid];
uint32_t nof_retx = sched_utils::get_nof_retx(data.dci.tb[0].rv); // 0..3
if (h.nof_txs == 0 or h.ndi != data.dci.tb[0].ndi) {
// It is newtx
CONDERROR(nof_retx != 0, "Invalid rv index for new tx\n");
h.active = true;
h.nof_retxs = 0;
h.ndi = data.dci.tb[0].ndi;
h.tti_tx = srslte::to_tx_dl(current_tti_rx);
} else {
// it is retx
CONDERROR(sched_utils::get_rvidx(h.nof_retxs + 1) != (uint32_t)data.dci.tb[0].rv, "Invalid rv index for retx\n");
CONDERROR(h.ndi != data.dci.tb[0].ndi, "Invalid ndi for retx\n");
CONDERROR(not h.active, "retx for inactive dl harq pid=%d\n", h.pid);
CONDERROR(h.tti_tx > current_tti_rx, "harq pid=%d reused too soon\n", h.pid);
CONDERROR(h.nof_retxs + 1 > sim_cfg.ue_cfg.maxharq_tx,
"The number of retx=%d exceeded its max=%d\n",
h.nof_retxs + 1,
sim_cfg.ue_cfg.maxharq_tx);
h.nof_retxs++;
h.tti_tx = srslte::to_tx_dl(current_tti_rx);
}
h.nof_txs++;
}
/* Test UL Harqs */
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
const auto& pusch = result.ul_result->pusch[i];
if (pusch.dci.rnti != rnti) {
continue;
}
CONDERROR(pusch.dci.ue_cc_idx != cc->ue_cc_idx, "invalid ue_cc_idx=%d in sched result\n", pusch.dci.ue_cc_idx);
auto& h = cc->ul_harqs[srslte::to_tx_ul(current_tti_rx).to_uint() % cc->ul_harqs.size()];
uint32_t nof_retx = sched_utils::get_nof_retx(pusch.dci.tb.rv); // 0..3
if (h.nof_txs == 0 or h.ndi != pusch.dci.tb.ndi) {
// newtx
CONDERROR(nof_retx != 0, "Invalid rv index for new tx\n");
h.active = true;
h.nof_retxs = 0;
h.ndi = pusch.dci.tb.ndi;
} else {
if (pusch.needs_pdcch) {
// adaptive retx
} else {
// non-adaptive retx
CONDERROR(pusch.dci.type2_alloc.riv != h.riv, "Non-adaptive retx must keep the same riv\n");
}
CONDERROR(sched_utils::get_rvidx(h.nof_retxs + 1) != (uint32_t)pusch.dci.tb.rv, "Invalid rv index for retx\n");
CONDERROR(h.ndi != pusch.dci.tb.ndi, "Invalid ndi for retx\n");
CONDERROR(not h.active, "retx for inactive UL harq pid=%d\n", h.pid);
CONDERROR(h.tti_tx > current_tti_rx, "UL harq pid=%d was reused too soon\n", h.pid);
h.nof_retxs++;
}
h.tti_tx = srslte::to_tx_ul(current_tti_rx);
h.riv = pusch.dci.type2_alloc.riv;
h.nof_txs++;
}
return SRSLTE_SUCCESS;
}
int ue_ctxt_test::schedule_acks(cc_result result)
{
auto* cc = get_cc_state(result.enb_cc_idx);
if (cc == nullptr) {
return SRSLTE_SUCCESS;
}
/* Schedule DL ACKs */
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
const auto& data = result.dl_result->data[i];
if (data.dci.rnti != rnti) {
continue;
}
pending_ack_t ack_data;
ack_data.tti_ack = srslte::to_tx_dl_ack(current_tti_rx);
ack_data.cc_idx = result.enb_cc_idx;
ack_data.tb = 0;
ack_data.pid = data.dci.pid;
ack_data.ue_cc_idx = data.dci.ue_cc_idx;
uint32_t nof_retx = sched_utils::get_nof_retx(data.dci.tb[0].rv); // 0..3
ack_data.ack = randf() < sim_cfg.prob_dl_ack_mask[nof_retx % sim_cfg.prob_dl_ack_mask.size()];
pending_dl_acks.push(ack_data);
}
/* Schedule UL ACKs */
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
const auto& pusch = result.ul_result->pusch[i];
if (pusch.dci.rnti != rnti) {
continue;
}
pending_ack_t ack_data;
ack_data.tti_ack = srslte::to_tx_ul(current_tti_rx);
ack_data.cc_idx = result.enb_cc_idx;
ack_data.ue_cc_idx = pusch.dci.ue_cc_idx;
ack_data.tb = 0;
ack_data.pid = srslte::to_tx_ul(current_tti_rx).to_uint() % cc->ul_harqs.size();
uint32_t nof_retx = sched_utils::get_nof_retx(pusch.dci.tb.rv); // 0..3
ack_data.ack = randf() < sim_cfg.prob_ul_ack_mask[nof_retx % sim_cfg.prob_ul_ack_mask.size()];
pending_ul_acks.push(ack_data);
}
return SRSLTE_SUCCESS;
}
int srsenb::extract_dl_prbmask(const srslte_cell_t& cell,
const srslte_dci_dl_t& dci,
srslte::bounded_bitset<100, true>* alloc_mask)
{
srslte_pdsch_grant_t grant;
srslte_dl_sf_cfg_t dl_sf = {};
alloc_mask->resize(cell.nof_prb);
alloc_mask->reset();
CONDERROR(srslte_ra_dl_dci_to_grant(&cell, &dl_sf, SRSLTE_TM1, false, &dci, &grant) == SRSLTE_ERROR,
"Failed to decode PDSCH grant\n");
for (uint32_t j = 0; j < alloc_mask->size(); ++j) {
if (grant.prb_idx[0][j]) {
alloc_mask->set(j);
}
}
return SRSLTE_SUCCESS;
}
void user_state_sched_tester::new_tti(sched* sched_ptr, uint32_t tti_rx)
{
tic++;
for (auto& u : users) {
u.second.new_tti(sched_ptr, srslte::tti_point{tti_rx});
}
}
int user_state_sched_tester::add_user(uint16_t rnti, uint32_t preamble_idx, const ue_ctxt_test_cfg& cfg_)
{
CONDERROR(!srslte_prach_tti_opportunity_config_fdd(
cell_params[cfg_.ue_cfg.supported_cc_list[0].enb_cc_idx].prach_config, tic.to_uint(), -1),
"New user added in a non-PRACH TTI\n");
TESTASSERT(users.count(rnti) == 0);
ue_ctxt_test ue{rnti, preamble_idx, srslte::tti_point{tic.to_uint()}, cfg_, cell_params};
users.insert(std::make_pair(rnti, ue));
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::user_reconf(uint16_t rnti, const srsenb::sched_interface::ue_cfg_t& ue_cfg)
{
TESTASSERT(users.count(rnti) > 0);
users.at(rnti).set_cfg(ue_cfg);
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::bearer_cfg(uint16_t rnti,
uint32_t lcid,
const srsenb::sched_interface::ue_bearer_cfg_t& bearer_cfg)
{
auto it = users.find(rnti);
TESTASSERT(it != users.end());
it->second.user_cfg.ue_bearers[lcid] = bearer_cfg;
users.at(rnti).drb_cfg_flag = false;
for (uint32_t i = 2; i < it->second.user_cfg.ue_bearers.size(); ++i) {
if (it->second.user_cfg.ue_bearers[i].direction != sched_interface::ue_bearer_cfg_t::IDLE) {
users.at(rnti).drb_cfg_flag = true;
}
}
return SRSLTE_SUCCESS;
}
void user_state_sched_tester::rem_user(uint16_t rnti)
{
users.erase(rnti);
}
/**
* Individual tests:
* - All RARs belong to a user that just PRACHed
* - All DL/UL data allocs have a valid RNTI
*/
int user_state_sched_tester::test_ctrl_info(uint32_t enb_cc_idx,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result)
{
/* TEST: Ensure there are no spurious RARs that do not belong to any user */
for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) {
for (uint32_t j = 0; j < dl_result.rar[i].nof_grants; ++j) {
uint32_t prach_tti = dl_result.rar[i].msg3_grant[j].data.prach_tti;
uint32_t preamble_idx = dl_result.rar[i].msg3_grant[j].data.preamble_idx;
auto it = std::find_if(users.begin(), users.end(), [&](const std::pair<uint16_t, ue_ctxt_test>& u) {
return u.second.preamble_idx == preamble_idx and ((uint32_t)u.second.prach_tti.to_uint() == prach_tti);
});
CONDERROR(it == users.end(), "There was a RAR allocation with no associated user");
CONDERROR(it->second.user_cfg.supported_cc_list[0].enb_cc_idx != enb_cc_idx,
"The allocated RAR is in the wrong cc\n");
}
}
/* TEST: All DL allocs have a correct rnti */
std::set<uint16_t> alloc_rntis;
for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) {
uint16_t rnti = dl_result.data[i].dci.rnti;
CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in DL\n", rnti);
CONDERROR(users.count(rnti) == 0, "The user rnti=0x%x allocated in DL does not exist\n", rnti);
alloc_rntis.insert(rnti);
}
/* TEST: All UL allocs have a correct rnti */
alloc_rntis.clear();
for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) {
uint16_t rnti = ul_result.pusch[i].dci.rnti;
CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in UL\n", rnti);
CONDERROR(users.count(rnti) == 0, "The user rnti=0x%x allocated in UL does not exist\n", rnti);
alloc_rntis.insert(rnti);
}
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::test_all(uint32_t enb_cc_idx,
const sched_interface::dl_sched_res_t& dl_result,
const sched_interface::ul_sched_res_t& ul_result)
{
TESTASSERT(test_ctrl_info(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS);
for (auto& u : users) {
TESTASSERT(u.second.test_sched_result(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS);
}
return SRSLTE_SUCCESS;
}
/***********************
* Sim Stats Storage
**********************/
void sched_result_stats::process_results(const tti_params_t& tti_params,
const std::vector<sched_interface::dl_sched_res_t>& dl_result,
const std::vector<sched_interface::ul_sched_res_t>& ul_result)
{
for (uint32_t ccidx = 0; ccidx < dl_result.size(); ++ccidx) {
for (uint32_t i = 0; i < dl_result[ccidx].nof_data_elems; ++i) {
user_stats* user = get_user(dl_result[ccidx].data[i].dci.rnti);
user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[0];
user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[1];
}
for (uint32_t i = 0; i < ul_result[ccidx].nof_dci_elems; ++i) {
user_stats* user = get_user(ul_result[ccidx].pusch[i].dci.rnti);
user->tot_ul_sched_data[ccidx] += ul_result[ccidx].pusch[i].tbs;
}
}
}
sched_result_stats::user_stats* sched_result_stats::get_user(uint16_t rnti)
{
if (users.count(rnti) != 0) {
return &users[rnti];
}
users[rnti].rnti = rnti;
users[rnti].tot_dl_sched_data.resize(cell_params.size(), 0);
users[rnti].tot_ul_sched_data.resize(cell_params.size(), 0);
return &users[rnti];
}
/***********************
* Common Sched Tester
**********************/
const sched::ue_cfg_t* common_sched_tester::get_current_ue_cfg(uint16_t rnti) const
{
return ue_tester->get_user_cfg(rnti);
}
int common_sched_tester::sim_cfg(sim_sched_args args)
{
sim_args0 = std::move(args);
sched::cell_cfg(sim_args0.cell_cfg); // call parent cfg
sched::set_sched_cfg(&sim_args0.sched_args);
ue_tester.reset(new user_state_sched_tester{sim_args0.cell_cfg});
output_tester.clear();
output_tester.reserve(sim_args0.cell_cfg.size());
for (uint32_t i = 0; i < sim_args0.cell_cfg.size(); ++i) {
output_tester.emplace_back(sched_cell_params[i]);
}
sched_stats.reset(new sched_result_stats{sim_args0.cell_cfg});
tester_log = sim_args0.sim_log;
return SRSLTE_SUCCESS;
}
int common_sched_tester::add_user(uint16_t rnti, const ue_ctxt_test_cfg& ue_cfg_)
{
CONDERROR(ue_cfg(rnti, generate_rach_ue_cfg(ue_cfg_.ue_cfg)) != SRSLTE_SUCCESS,
"Configuring new user rnti=0x%x to sched\n",
rnti);
// CONDERROR(!srslte_prach_tti_opportunity_config_fdd(
// sched_cell_params[CARRIER_IDX].cfg.prach_config, tti_info.tti_params.tti_rx, -1),
// "New user added in a non-PRACH TTI\n");
dl_sched_rar_info_t rar_info = {};
rar_info.prach_tti = tti_info.tti_params.tti_rx;
rar_info.temp_crnti = rnti;
rar_info.msg3_size = 7;
rar_info.preamble_idx = tti_info.nof_prachs++;
uint32_t pcell_idx = ue_cfg_.ue_cfg.supported_cc_list[0].enb_cc_idx;
dl_rach_info(pcell_idx, rar_info);
ue_tester->add_user(rnti, rar_info.preamble_idx, ue_cfg_);
tester_log->info("Adding user rnti=0x%x\n", rnti);
return SRSLTE_SUCCESS;
}
int common_sched_tester::reconf_user(uint16_t rnti, const sched_interface::ue_cfg_t& ue_cfg_)
{
CONDERROR(not ue_tester->user_exists(rnti), "User must already exist to be configured\n");
CONDERROR(ue_cfg(rnti, ue_cfg_) != SRSLTE_SUCCESS, "Configuring new user rnti=0x%x to sched\n", rnti);
ue_tester->user_reconf(rnti, ue_cfg_);
return SRSLTE_SUCCESS;
}
void common_sched_tester::rem_user(uint16_t rnti)
{
tester_log->info("Removing user rnti=0x%x\n", rnti);
sched::ue_rem(rnti);
ue_tester->rem_user(rnti);
}
void common_sched_tester::new_test_tti()
{
if (not tic.is_valid()) {
tic = srslte::tti_point{sim_args0.start_tti};
} else {
tic++;
}
tti_info.tti_params = tti_params_t{tic.to_uint()};
tti_info.nof_prachs = 0;
tti_info.dl_sched_result.clear();
tti_info.ul_sched_result.clear();
tti_info.dl_sched_result.resize(sched_cell_params.size());
tti_info.ul_sched_result.resize(sched_cell_params.size());
tester_log->step(tti_info.tti_params.tti_rx);
}
int common_sched_tester::process_results()
{
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
TESTASSERT(ue_tester->test_all(i, tti_info.dl_sched_result[i], tti_info.ul_sched_result[i]) == SRSLTE_SUCCESS);
TESTASSERT(output_tester[i].test_all(
tti_info.tti_params, tti_info.dl_sched_result[i], tti_info.ul_sched_result[i]) == SRSLTE_SUCCESS);
}
sched_stats->process_results(tti_info.tti_params, tti_info.dl_sched_result, tti_info.ul_sched_result);
return SRSLTE_SUCCESS;
}
int common_sched_tester::process_tti_events(const tti_ev& tti_ev)
{
for (const tti_ev::user_cfg_ev& ue_ev : tti_ev.user_updates) {
// There is a new configuration
if (ue_ev.ue_sim_cfg != nullptr) {
if (not ue_tester->user_exists(ue_ev.rnti)) {
// new user
TESTASSERT(add_user(ue_ev.rnti, *ue_ev.ue_sim_cfg) == SRSLTE_SUCCESS);
} else {
// reconfiguration
TESTASSERT(reconf_user(ue_ev.rnti, ue_ev.ue_sim_cfg->ue_cfg) == SRSLTE_SUCCESS);
}
}
// There is a user to remove
if (ue_ev.rem_user) {
rem_user(ue_ev.rnti);
}
// configure bearers
if (ue_ev.bearer_cfg != nullptr) {
CONDERROR(not ue_tester->user_exists(ue_ev.rnti), "User rnti=0x%x does not exist\n", ue_ev.rnti);
// TODO: Instantiate more bearers
bearer_ue_cfg(ue_ev.rnti, 0, ue_ev.bearer_cfg.get());
}
const ue_ctxt_test* user = ue_tester->get_user_ctxt(ue_ev.rnti);
if (user != nullptr and not user->msg4_tti.is_valid() and user->msg3_tti.is_valid() and user->msg3_tti <= tic) {
// Msg3 has been received but Msg4 has not been yet transmitted
// Setup default UE config
reconf_user(user->rnti, generate_setup_ue_cfg(sim_args0.default_ue_sim_cfg.ue_cfg));
// Schedule RRC Setup and ConRes CE
uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data();
if (pending_dl_new_data == 0) {
uint32_t lcid = RB_ID_SRB0; // Use SRB0 to schedule Msg4
dl_rlc_buffer_state(ue_ev.rnti, lcid, 50, 0);
dl_mac_buffer_state(ue_ev.rnti, (uint32_t)srslte::dl_sch_lcid::CON_RES_ID);
} else {
// Let SRB0 Msg4 get fully transmitted
}
}
// push UL SRs and DL packets
if (ue_ev.buffer_ev != nullptr) {
CONDERROR(user == nullptr, "TESTER ERROR: Trying to schedule data for user that does not exist\n");
if (ue_ev.buffer_ev->dl_data > 0 and user->msg4_tti.is_valid()) {
// If Msg4 has already been tx and there DL data to transmit
uint32_t lcid = RB_ID_DRB1;
uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data();
if (user->drb_cfg_flag or pending_dl_new_data == 0) {
// If RRCSetup finished
if (not user->drb_cfg_flag) {
reconf_user(user->rnti, sim_args0.default_ue_sim_cfg.ue_cfg);
// setup lcid==drb1 bearer
sched::ue_bearer_cfg_t cfg = {};
cfg.direction = ue_bearer_cfg_t::BOTH;
cfg.group = 1;
ue_tester->bearer_cfg(ue_ev.rnti, lcid, cfg);
bearer_ue_cfg(ue_ev.rnti, lcid, &cfg);
}
// DRB is set. Update DL buffer
uint32_t tot_dl_data = pending_dl_new_data + ue_ev.buffer_ev->dl_data; // TODO: derive pending based on rx
dl_rlc_buffer_state(ue_ev.rnti, lcid, tot_dl_data, 0); // TODO: Check retx_queue
} else {
// Let SRB0 get emptied
}
}
if (ue_ev.buffer_ev->sr_data > 0 and user->drb_cfg_flag) {
uint32_t tot_ul_data =
ue_db[ue_ev.rnti].get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul) + ue_ev.buffer_ev->sr_data;
uint32_t lcg = 1;
ul_bsr(ue_ev.rnti, lcg, tot_ul_data);
}
}
}
return SRSLTE_SUCCESS;
}
int common_sched_tester::run_tti(const tti_ev& tti_events)
{
new_test_tti();
tester_log->info("---- tti=%u | nof_ues=%zd ----\n", tic.to_uint(), ue_db.size());
ue_tester->new_tti(this, tti_info.tti_params.tti_rx);
process_tti_events(tti_events);
before_sched();
// Call scheduler for all carriers
tti_info.dl_sched_result.resize(sched_cell_params.size());
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
dl_sched(tti_info.tti_params.tti_tx_dl, i, tti_info.dl_sched_result[i]);
}
tti_info.ul_sched_result.resize(sched_cell_params.size());
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
ul_sched(tti_info.tti_params.tti_tx_ul, i, tti_info.ul_sched_result[i]);
}
process_results();
tti_count++;
return SRSLTE_SUCCESS;
}
int common_sched_tester::test_next_ttis(const std::vector<tti_ev>& tti_events)
{
while (tti_count < tti_events.size()) {
TESTASSERT(run_tti(tti_events[tti_count]) == SRSLTE_SUCCESS);
}
return SRSLTE_SUCCESS;
}