You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

635 lines
17 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_RRC_H
#define SRSUE_RRC_H
#include "pthread.h"
#include "rrc_common.h"
#include "srslte/common/buffer_pool.h"
#include "srslte/common/log.h"
#include "srslte/common/common.h"
#include "srslte/interfaces/ue_interfaces.h"
#include "srslte/common/security.h"
#include "srslte/common/threads.h"
#include "srslte/common/block_queue.h"
#include <math.h>
#include <map>
#include <queue>
typedef struct {
uint32_t ue_category;
uint32_t feature_group;
uint8_t supported_bands[LIBLTE_RRC_BAND_N_ITEMS];
uint32_t nof_supported_bands;
}rrc_args_t;
using srslte::byte_buffer_t;
namespace srsue {
class cell_t
{
public:
bool is_valid() {
return phy_cell.earfcn != 0 && srslte_cell_isvalid(&phy_cell.cell);
}
bool equals(cell_t *x) {
return equals(x->phy_cell.earfcn, x->phy_cell.cell.id);
}
bool equals(uint32_t earfcn, uint32_t pci) {
return earfcn == this->phy_cell.earfcn && pci == phy_cell.cell.id;
}
// NaN means an RSRP value has not yet been obtained. Keep then in the list and clean them if never updated
bool greater(cell_t *x) {
return rsrp > x->rsrp || isnan(rsrp);
}
bool plmn_equals(LIBLTE_RRC_PLMN_IDENTITY_STRUCT plmn_id) {
if (has_valid_sib1) {
for (uint32_t i = 0; i < sib1.N_plmn_ids; i++) {
if (plmn_id.mcc == sib1.plmn_id[i].id.mcc && plmn_id.mnc == sib1.plmn_id[i].id.mnc) {
return true;
}
}
}
return false;
}
uint32_t nof_plmns() {
if (has_valid_sib1) {
return sib1.N_plmn_ids;
} else {
return 0;
}
}
LIBLTE_RRC_PLMN_IDENTITY_STRUCT get_plmn(uint32_t idx) {
if (idx < sib1.N_plmn_ids && has_valid_sib1) {
return sib1.plmn_id[idx].id;
} else {
LIBLTE_RRC_PLMN_IDENTITY_STRUCT null;
null.mnc = 0;
null.mcc = 0;
return null;
}
}
uint16_t get_tac() {
if (has_valid_sib1) {
return sib1.tracking_area_code;
} else {
return 0;
}
}
cell_t() {
phy_interface_rrc::phy_cell_t tmp = {};
cell_t(tmp, 0);
}
cell_t(phy_interface_rrc::phy_cell_t phy_cell, float rsrp) {
gettimeofday(&last_update, NULL);
this->has_valid_sib1 = false;
this->has_valid_sib2 = false;
this->has_valid_sib3 = false;
this->has_valid_sib13 = false;
this->phy_cell = phy_cell;
this->rsrp = rsrp;
in_sync = true;
bzero(&sib1, sizeof(sib1));
bzero(&sib2, sizeof(sib2));
bzero(&sib3, sizeof(sib3));
bzero(&sib13, sizeof(sib13));
}
uint32_t get_earfcn() {
return phy_cell.earfcn;
}
uint32_t get_pci() {
return phy_cell.cell.id;
}
void set_rsrp(float rsrp) {
if (!isnan(rsrp)) {
this->rsrp = rsrp;
}
in_sync = true;
gettimeofday(&last_update, NULL);
}
float get_rsrp() {
return rsrp;
}
void set_sib1(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_1_STRUCT *sib1) {
memcpy(&this->sib1, sib1, sizeof(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_1_STRUCT));
has_valid_sib1 = true;
}
void set_sib2(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_2_STRUCT *sib2) {
memcpy(&this->sib2, sib2, sizeof(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_2_STRUCT));
has_valid_sib2 = true;
}
void set_sib3(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_3_STRUCT *sib3) {
memcpy(&this->sib3, sib3, sizeof(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_3_STRUCT));
has_valid_sib3 = true;
}
void set_sib13(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_13_STRUCT *sib13) {
memcpy(&this->sib13, sib13, sizeof(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_13_STRUCT));
has_valid_sib13 = true;
}
uint32_t timeout_secs(struct timeval now) {
struct timeval t[3];
memcpy(&t[2], &now, sizeof(struct timeval));
memcpy(&t[1], &last_update, sizeof(struct timeval));
get_time_interval(t);
return t[0].tv_sec;
}
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_1_STRUCT *sib1ptr() {
return &sib1;
}
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_2_STRUCT *sib2ptr() {
return &sib2;
}
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_3_STRUCT *sib3ptr() {
return &sib3;
}
uint32_t get_cell_id() {
return sib1.cell_id;
}
bool has_sib1() {
return has_valid_sib1;
}
bool has_sib2() {
return has_valid_sib2;
}
bool has_sib3() {
return has_valid_sib3;
}
bool has_sib13() {
return has_valid_sib13;
}
bool has_sib(uint32_t index) {
switch(index) {
case 0:
return has_sib1();
case 1:
return has_sib2();
case 2:
return has_sib3();
case 12:
return has_sib13();
}
return false;
}
uint16_t get_mcc() {
if (has_valid_sib1) {
if (sib1.N_plmn_ids > 0) {
return sib1.plmn_id[0].id.mcc;
}
}
return 0;
}
uint16_t get_mnc() {
if (has_valid_sib1) {
if (sib1.N_plmn_ids > 0) {
return sib1.plmn_id[0].id.mnc;
}
}
return 0;
}
phy_interface_rrc::phy_cell_t phy_cell;
bool in_sync;
private:
float rsrp;
struct timeval last_update;
bool has_valid_sib1;
bool has_valid_sib2;
bool has_valid_sib3;
bool has_valid_sib13;
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_1_STRUCT sib1;
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_2_STRUCT sib2;
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_3_STRUCT sib3;
LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_13_STRUCT sib13;
};
class rrc
:public rrc_interface_nas
,public rrc_interface_phy
,public rrc_interface_mac
,public rrc_interface_pdcp
,public rrc_interface_rlc
,public srslte::timer_callback
,public thread
{
public:
rrc();
~rrc();
void init(phy_interface_rrc *phy_,
mac_interface_rrc *mac_,
rlc_interface_rrc *rlc_,
pdcp_interface_rrc *pdcp_,
nas_interface_rrc *nas_,
usim_interface_rrc *usim_,
srslte::mac_interface_timers *mac_timers_,
srslte::log *rrc_log_);
void stop();
rrc_state_t get_state();
void set_args(rrc_args_t *args);
// Timeout callback interface
void timer_expired(uint32_t timeout_id);
void liblte_rrc_log(char *str);
// NAS interface
void write_sdu(uint32_t lcid, byte_buffer_t *sdu);
void enable_capabilities();
uint16_t get_mcc();
uint16_t get_mnc();
int plmn_search(found_plmn_t found_plmns[MAX_FOUND_PLMNS]);
void plmn_select(LIBLTE_RRC_PLMN_IDENTITY_STRUCT plmn_id);
bool connection_request(LIBLTE_RRC_CON_REQ_EST_CAUSE_ENUM cause,
srslte::byte_buffer_t *dedicatedInfoNAS);
void set_ue_idenity(LIBLTE_RRC_S_TMSI_STRUCT s_tmsi);
// PHY interface
void in_sync();
void out_of_sync();
void new_phy_meas(float rsrp, float rsrq, uint32_t tti, int earfcn, int pci);
// MAC interface
void ho_ra_completed(bool ra_successful);
void release_pucch_srs();
void run_tti(uint32_t tti);
void ra_problem();
// GW interface
bool is_connected(); // this is also NAS interface
bool have_drb();
// PDCP interface
void write_pdu(uint32_t lcid, byte_buffer_t *pdu);
void write_pdu_bcch_bch(byte_buffer_t *pdu);
void write_pdu_bcch_dlsch(byte_buffer_t *pdu);
void write_pdu_pcch(byte_buffer_t *pdu);
private:
typedef struct {
enum {
PCCH,
STOP
} command;
byte_buffer_t *pdu;
} cmd_msg_t;
bool running;
srslte::block_queue<cmd_msg_t> cmd_q;
void run_thread();
void process_pcch(byte_buffer_t *pdu);
srslte::byte_buffer_pool *pool;
srslte::log *rrc_log;
phy_interface_rrc *phy;
mac_interface_rrc *mac;
rlc_interface_rrc *rlc;
pdcp_interface_rrc *pdcp;
nas_interface_rrc *nas;
usim_interface_rrc *usim;
LIBLTE_RRC_UL_DCCH_MSG_STRUCT ul_dcch_msg;
LIBLTE_RRC_UL_CCCH_MSG_STRUCT ul_ccch_msg;
LIBLTE_RRC_DL_CCCH_MSG_STRUCT dl_ccch_msg;
LIBLTE_RRC_DL_DCCH_MSG_STRUCT dl_dcch_msg;
byte_buffer_t *dedicatedInfoNAS;
byte_buffer_t* byte_align_and_pack();
void send_ul_ccch_msg();
void send_ul_dcch_msg();
srslte::bit_buffer_t bit_buf;
pthread_mutex_t mutex;
rrc_state_t state;
uint8_t transaction_id;
LIBLTE_RRC_S_TMSI_STRUCT ueIdentity;
bool ueIdentity_configured;
bool drb_up;
rrc_args_t args;
uint32_t cell_clean_cnt;
uint16_t ho_src_rnti;
cell_t ho_src_cell;
phy_interface_rrc::phy_cfg_t previous_phy_cfg;
mac_interface_rrc::mac_cfg_t previous_mac_cfg;
bool pending_mob_reconf;
LIBLTE_RRC_CONNECTION_RECONFIGURATION_STRUCT mob_reconf;
uint8_t k_rrc_enc[32];
uint8_t k_rrc_int[32];
uint8_t k_up_enc[32];
uint8_t k_up_int[32]; // Not used: only for relay nodes (3GPP 33.401 Annex A.7)
srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo;
srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo;
std::map<uint32_t, LIBLTE_RRC_SRB_TO_ADD_MOD_STRUCT> srbs;
std::map<uint32_t, LIBLTE_RRC_DRB_TO_ADD_MOD_STRUCT> drbs;
// RRC constants and timers
srslte::mac_interface_timers *mac_timers;
uint32_t n310_cnt, N310;
uint32_t n311_cnt, N311;
uint32_t t300, t301, t302, t310, t311, t304;
// Radio bearers
typedef enum{
RB_ID_SRB0 = 0,
RB_ID_SRB1,
RB_ID_SRB2,
RB_ID_DRB1,
RB_ID_DRB2,
RB_ID_DRB3,
RB_ID_DRB4,
RB_ID_DRB5,
RB_ID_DRB6,
RB_ID_DRB7,
RB_ID_DRB8,
RB_ID_MAX
} rb_id_t;
static const std::string rb_id_str[];
std::string get_rb_name(uint32_t lcid)
{
if (lcid < RB_ID_MAX) {
return rb_id_str[lcid];
} else {
return "INVALID_RB";
}
}
// List of strongest neighbour cell
const static int NEIGHBOUR_TIMEOUT = 5;
const static int NOF_NEIGHBOUR_CELLS = 8;
std::vector<cell_t*> neighbour_cells;
cell_t *serving_cell;
void set_serving_cell(uint32_t cell_idx);
void set_serving_cell(phy_interface_rrc::phy_cell_t phy_cell);
int find_neighbour_cell(uint32_t earfcn, uint32_t pci);
bool add_neighbour_cell(uint32_t earfcn, uint32_t pci, float rsrp);
bool add_neighbour_cell(phy_interface_rrc::phy_cell_t phy_cell, float rsrp);
bool add_neighbour_cell(cell_t *cell);
void sort_neighbour_cells();
void clean_neighbours();
std::vector<cell_t*>::iterator delete_neighbour(std::vector<cell_t*>::iterator it);
void delete_neighbour(uint32_t cell_idx);
bool configure_serving_cell();
bool si_acquire(uint32_t index);
uint32_t sib_start_tti(uint32_t tti, uint32_t period, uint32_t offset, uint32_t sf);
const static int SIB_SEARCH_TIMEOUT_MS = 1000;
const static uint32_t NOF_REQUIRED_SIBS = 3; // SIB1, SIB2 and SIB3
bool initiated;
bool ho_start;
bool go_idle;
// Measurements sub-class
class rrc_meas {
public:
void init(rrc *parent);
void reset();
bool parse_meas_config(LIBLTE_RRC_MEAS_CONFIG_STRUCT *meas_config);
void new_phy_meas(uint32_t earfcn, uint32_t pci, float rsrp, float rsrq, uint32_t tti);
void run_tti(uint32_t tti);
bool timer_expired(uint32_t timer_id);
void ho_finish();
void delete_report(uint32_t earfcn, uint32_t pci);
private:
const static int NOF_MEASUREMENTS = 3;
typedef enum {RSRP = 0, RSRQ = 1, BOTH = 2} quantity_t;
typedef struct {
uint32_t pci;
float q_offset;
} meas_cell_t;
typedef struct {
uint32_t earfcn;
float q_offset;
std::map<uint32_t, meas_cell_t> cells;
} meas_obj_t;
typedef struct {
uint32_t interval;
uint32_t max_cell;
uint32_t amount;
quantity_t trigger_quantity;
quantity_t report_quantity;
LIBLTE_RRC_EVENT_EUTRA_STRUCT event;
enum {EVENT, PERIODIC} trigger_type;
} report_cfg_t;
typedef struct {
float ms[NOF_MEASUREMENTS];
bool triggered;
bool timer_enter_triggered;
bool timer_exit_triggered;
uint32_t enter_tti;
uint32_t exit_tti;
} meas_value_t;
typedef struct {
uint32_t nof_reports_sent;
uint32_t report_id;
uint32_t object_id;
bool triggered;
uint32_t periodic_timer;
std::map<uint32_t, meas_value_t> cell_values; // Value for each PCI in this object
} meas_t;
std::map<uint32_t, meas_obj_t> objects;
std::map<uint32_t, report_cfg_t> reports_cfg;
std::map<uint32_t, meas_t> active;
rrc *parent;
srslte::log *log_h;
phy_interface_rrc *phy;
srslte::mac_interface_timers *mac_timers;
uint32_t filter_k_rsrp, filter_k_rsrq;
float filter_a[NOF_MEASUREMENTS];
meas_value_t pcell_measurement;
bool s_measure_enabled;
float s_measure_value;
void stop_reports(meas_t *m);
void stop_reports_object(uint32_t object_id);
void remove_meas_object(uint32_t object_id);
void remove_meas_report(uint32_t report_id);
void remove_meas_id(uint32_t measId);
void remove_meas_id(std::map<uint32_t, meas_t>::iterator it);
void calculate_triggers(uint32_t tti);
void update_phy();
void L3_filter(meas_value_t *value, float rsrp[NOF_MEASUREMENTS]);
bool find_earfcn_cell(uint32_t earfcn, uint32_t pci, meas_obj_t **object, int *cell_idx);
float range_to_value(quantity_t quant, uint8_t range);
uint8_t value_to_range(quantity_t quant, float value);
bool process_event(LIBLTE_RRC_EVENT_EUTRA_STRUCT *event, uint32_t tti,
bool enter_condition, bool exit_condition,
meas_t *m, meas_value_t *cell);
void generate_report(uint32_t meas_id);
};
rrc_meas measurements;
// Measurement object from phy
typedef struct {
float rsrp;
float rsrq;
uint32_t tti;
uint32_t earfcn;
uint32_t pci;
} phy_meas_t;
void process_phy_meas();
void process_new_phy_meas(phy_meas_t meas);
std::queue<phy_meas_t> phy_meas_q;
// Cell selection/reselection functions/variables
typedef struct {
float Qrxlevmin;
float Qrxlevminoffset;
float Qqualmin;
float Qqualminoffset;
float s_intrasearchP;
float q_hyst;
float threshservinglow;
} cell_resel_cfg_t;
cell_resel_cfg_t cell_resel_cfg;
float get_srxlev(float Qrxlevmeas);
float get_squal(float Qqualmeas);
bool cell_selection();
bool cell_selection_criteria(float rsrp, float rsrq = 0);
void cell_reselection(float rsrp, float rsrq);
phy_interface_rrc::cell_search_ret_t cell_search();
LIBLTE_RRC_PLMN_IDENTITY_STRUCT selected_plmn_id;
bool plmn_is_selected;
bool security_is_activated;
// RLC interface
void max_retx_attempted();
// Senders
void send_con_request(LIBLTE_RRC_CON_REQ_EST_CAUSE_ENUM cause);
void send_con_restablish_request(LIBLTE_RRC_CON_REEST_REQ_CAUSE_ENUM cause);
void send_con_restablish_complete();
void send_con_setup_complete(byte_buffer_t *nas_msg);
void send_ul_info_transfer(byte_buffer_t *nas_msg);
void send_security_mode_complete();
void send_rrc_con_reconfig_complete();
void send_rrc_ue_cap_info();
// Parsers
void parse_dl_ccch(byte_buffer_t *pdu);
void parse_dl_dcch(uint32_t lcid, byte_buffer_t *pdu);
void parse_dl_info_transfer(uint32_t lcid, byte_buffer_t *pdu);
// Helpers
bool con_reconfig(LIBLTE_RRC_CONNECTION_RECONFIGURATION_STRUCT *reconfig);
void con_reconfig_failed();
bool con_reconfig_ho(LIBLTE_RRC_CONNECTION_RECONFIGURATION_STRUCT *reconfig);
bool ho_prepare();
void ho_failed();
void rrc_connection_release();
void radio_link_failure();
void leave_connected();
void apply_rr_config_common_dl(LIBLTE_RRC_RR_CONFIG_COMMON_STRUCT *config);
void apply_rr_config_common_ul(LIBLTE_RRC_RR_CONFIG_COMMON_STRUCT *config);
void handle_sib1();
void handle_sib2();
void handle_sib3();
void handle_sib13();
void apply_sib2_configs(LIBLTE_RRC_SYS_INFO_BLOCK_TYPE_2_STRUCT *sib2);
void handle_con_setup(LIBLTE_RRC_CONNECTION_SETUP_STRUCT *setup);
void handle_con_reest(LIBLTE_RRC_CONNECTION_REESTABLISHMENT_STRUCT *setup);
void handle_rrc_con_reconfig(uint32_t lcid, LIBLTE_RRC_CONNECTION_RECONFIGURATION_STRUCT *reconfig);
void add_srb(LIBLTE_RRC_SRB_TO_ADD_MOD_STRUCT *srb_cnfg);
void add_drb(LIBLTE_RRC_DRB_TO_ADD_MOD_STRUCT *drb_cnfg);
void release_drb(uint8_t lcid);
bool apply_rr_config_dedicated(LIBLTE_RRC_RR_CONFIG_DEDICATED_STRUCT *cnfg);
void apply_phy_config_dedicated(LIBLTE_RRC_PHYSICAL_CONFIG_DEDICATED_STRUCT *phy_cnfg, bool apply_defaults);
void apply_mac_config_dedicated(LIBLTE_RRC_MAC_MAIN_CONFIG_STRUCT *mac_cfg, bool apply_defaults);
// Helpers for setting default values
void set_phy_default_pucch_srs();
void set_phy_default();
void set_mac_default();
void set_rrc_default();
};
} // namespace srsue
#endif // SRSUE_RRC_H