You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/upper/rlc_um_nr_test.cc

618 lines
19 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "rlc_test_common.h"
#include "srslte/common/log_filter.h"
#include "srslte/config.h"
#include "srslte/upper/rlc.h"
#include "srslte/upper/rlc_um_nr.h"
#include <array>
#include <iostream>
#include <memory>
#include <vector>
#define TESTASSERT(cond) \
{ \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return -1; \
} \
}
#define PCAP 0
#define PCAP_CRNTI (0x1001)
#define PCAP_TTI (666)
using namespace srslte;
#if PCAP
#include "srslte/common/mac_nr_pcap.h"
#include "srslte/common/mac_nr_pdu.h"
static std::unique_ptr<srslte::mac_nr_pcap> pcap_handle = nullptr;
#endif
int write_pdu_to_pcap(const uint32_t lcid, const uint8_t* payload, const uint32_t len)
{
#if PCAP
if (pcap_handle) {
byte_buffer_t tx_buffer;
srslte::mac_nr_sch_pdu tx_pdu;
tx_pdu.init_tx(&tx_buffer, len + 10);
tx_pdu.add_sdu(lcid, payload, len);
tx_pdu.pack();
pcap_handle->write_dl_crnti(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI);
return SRSLTE_SUCCESS;
}
#endif
return SRSLTE_ERROR;
}
template <std::size_t N>
srslte::byte_buffer_t make_pdu_and_log(const std::array<uint8_t, N>& tv)
{
srslte::byte_buffer_t pdu;
memcpy(pdu.msg, tv.data(), tv.size());
pdu.N_bytes = tv.size();
write_pdu_to_pcap(4, tv.data(), tv.size());
return pdu;
}
// Helper class to create two pre-configured RLC instances
class rlc_um_nr_test_context1
{
public:
rlc_um_nr_test_context1() :
log1("RLC_UM_1"),
log2("RLC_UM_2"),
timers(16),
rlc1(&log1, 3, &tester, &tester, &timers),
rlc2(&log2, 3, &tester, &tester, &timers)
{
// setup logging
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
// configure RLC entities
rlc_config_t cnfg = rlc_config_t::default_rlc_um_nr_config(6);
if (rlc1.configure(cnfg) != true) {
fprintf(stderr, "Couldn't configure RLC1 object\n");
}
if (rlc2.configure(cnfg) != true) {
fprintf(stderr, "Couldn't configure RLC2 object\n");
}
tester.set_expected_sdu_len(1);
}
srslte::log_filter log1, log2;
srslte::timer_handler timers;
rlc_um_tester tester;
rlc_um_nr rlc1, rlc2;
};
// Basic test to write UM PDU with 6 bit SN (full SDUs are transmitted in each PDU)
int rlc_um_nr_test1()
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 5, num_pdus = 5;
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
*sdu_bufs[i]->msg = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(14 == ctxt.rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
unique_byte_buffer_t pdu_bufs[num_pdus];
for (uint32_t i = 0; i < num_pdus; i++) {
pdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, 4); // 3 bytes for header + payload
pdu_bufs[i]->N_bytes = len;
// write PCAP
write_pdu_to_pcap(4, pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write 5 PDUs into RLC2
for (uint32_t i = 0; i < num_pdus; i++) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(num_sdus == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == 1);
TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i);
}
return SRSLTE_SUCCESS;
}
// Basic test for SDU segmentation
int rlc_um_nr_test2(bool reverse_rx = false)
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 1;
const uint32_t sdu_size = 100;
ctxt.tester.set_expected_sdu_len(sdu_size);
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
// Write the index into the buffer
for (uint32_t k = 0; k < sdu_size; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_size;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// FIXME: check buffer state calculation
TESTASSERT(103 == ctxt.rlc1.get_buffer_state());
// Read PDUs from RLC1 with grant of 25 Bytes each
const uint32_t max_num_pdus = 10;
uint32 num_pdus = 0;
unique_byte_buffer_t pdu_bufs[max_num_pdus];
while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) {
pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 25); // 3 bytes for header + payload
pdu_bufs[num_pdus]->N_bytes = len;
// write PCAP
write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes);
num_pdus++;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write PDUs into RLC2
if (reverse_rx) {
// receive PDUs in reverse order
for (uint32_t i = num_pdus; i > 0; i--) {
ctxt.rlc2.write_pdu(pdu_bufs[i - 1]->msg, pdu_bufs[i - 1]->N_bytes);
}
} else {
// receive PDUs in order
for (uint32_t i = 0; i < num_pdus; i++) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(num_sdus == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size);
TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i);
}
return SRSLTE_SUCCESS;
}
// Test reception of segmented RLC PDUs (two different SDUs with same PDU segmentation)
int rlc_um_nr_test4()
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 2;
const uint32_t sdu_size = 100;
ctxt.tester.set_expected_sdu_len(sdu_size);
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
// Write the index into the buffer
for (uint32_t k = 0; k < sdu_size; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_size;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// FIXME: check buffer state calculation
int bsr = ctxt.rlc1.get_buffer_state();
TESTASSERT(bsr == 205);
// Read PDUs from RLC1 with grant of 25 Bytes each
const uint32_t max_num_pdus = 20;
uint32 num_pdus = 0;
unique_byte_buffer_t pdu_bufs[max_num_pdus];
while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) {
pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 25); // 3 bytes for header + payload
pdu_bufs[num_pdus]->N_bytes = len;
num_pdus++;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write PDUs into RLC2 (except 1 and 6
for (uint32_t i = 0; i < num_pdus; i++) {
if (i != 1 && i != 6) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
write_pdu_to_pcap(4, pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
// write remaining two PDUs in reverse-order (so SN=1 is received first)
ctxt.rlc2.write_pdu(pdu_bufs[6]->msg, pdu_bufs[6]->N_bytes);
write_pdu_to_pcap(4, pdu_bufs[6]->msg, pdu_bufs[6]->N_bytes);
ctxt.rlc2.write_pdu(pdu_bufs[1]->msg, pdu_bufs[1]->N_bytes);
write_pdu_to_pcap(4, pdu_bufs[1]->msg, pdu_bufs[1]->N_bytes);
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(num_sdus == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size);
// common tester makes sure the all bytes within the SDU are the same, but it doesn't verify the SDUs are the ones
// transmitted, so check this here
if (i == 0) {
// first SDU is SN=1
TESTASSERT(*(ctxt.tester.sdus.at(i)->msg) == 0x01);
} else {
// second SDU is SN=0
TESTASSERT(*(ctxt.tester.sdus.at(i)->msg) == 0x00);
}
}
return SRSLTE_SUCCESS;
}
// Handling of re-transmitted segments (e.g. after PHY retransmission)
int rlc_um_nr_test5(const uint32_t last_sn)
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 1;
const uint32_t sdu_size = 100;
ctxt.tester.set_expected_sdu_len(sdu_size);
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
// Write the index into the buffer
for (uint32_t k = 0; k < sdu_size; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_size;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// FIXME: check buffer state calculation
TESTASSERT(103 == ctxt.rlc1.get_buffer_state());
// Read PDUs from RLC1 with grant of 25 Bytes each
const uint32_t max_num_pdus = 10;
uint32 num_pdus = 0;
unique_byte_buffer_t pdu_bufs[max_num_pdus];
while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) {
pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 25); // 3 bytes for header + payload
pdu_bufs[num_pdus]->N_bytes = len;
// write PCAP
write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes);
num_pdus++;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write alls PDUs twice into RLC2 (except third)
for (uint32_t k = 0; k < 2; k++) {
for (uint32_t i = 0; i < num_pdus; i++) {
if (i != last_sn) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
}
// Write third PDU
ctxt.rlc2.write_pdu(pdu_bufs[last_sn]->msg, pdu_bufs[last_sn]->N_bytes);
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(num_sdus == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size);
TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i);
}
return SRSLTE_SUCCESS;
}
// Test of wrap-around of reassembly window
int rlc_um_nr_test6()
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 64;
const uint32_t sdu_size = 10;
ctxt.tester.set_expected_sdu_len(sdu_size);
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
// Write the index into the buffer
for (uint32_t k = 0; k < sdu_size; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_size;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// FIXME: check buffer state calculation
// TESTASSERT(103 == ctxt.rlc1.get_buffer_state());
// Read PDUs from RLC1 with grant of 8 Bytes each
const uint32_t max_num_pdus = num_sdus * 2; // we need 2 PDUs for each SDU
uint32 num_pdus = 0;
unique_byte_buffer_t pdu_bufs[max_num_pdus];
while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) {
pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 8); // 3 bytes for header + payload
pdu_bufs[num_pdus]->N_bytes = len;
// write PCAP
write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes);
num_pdus++;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write PDUs into RLC2
for (uint32_t i = 0; i < num_pdus; i++) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(num_sdus == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size);
TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i);
}
return SRSLTE_SUCCESS;
}
// Segment loss received too many new PDUs (lost PDU outside of reassembly window)
int rlc_um_nr_test7()
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 64;
const uint32_t sdu_size = 10;
ctxt.tester.set_expected_sdu_len(sdu_size);
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
// Write the index into the buffer
for (uint32_t k = 0; k < sdu_size; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_size;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// FIXME: check buffer state calculation
// TESTASSERT(103 == ctxt.rlc1.get_buffer_state());
// Read PDUs from RLC1 with grant of 8 Bytes each
const uint32_t max_num_pdus = num_sdus * 2; // we need 2 PDUs for each SDU
uint32 num_pdus = 0;
unique_byte_buffer_t pdu_bufs[max_num_pdus];
while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) {
pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 8); // 3 bytes for header + payload
pdu_bufs[num_pdus]->N_bytes = len;
// write PCAP
write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes);
num_pdus++;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write PDUs into RLC2 (except 11th)
for (uint32_t i = 0; i < num_pdus; i++) {
if (i != 10) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(num_sdus - 1 == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size);
}
rlc_bearer_metrics_t rlc2_metrics = ctxt.rlc2.get_metrics();
TESTASSERT(rlc2_metrics.num_lost_pdus == 1);
return SRSLTE_SUCCESS;
}
// Segment loss and expiry of reassembly timer
int rlc_um_nr_test8()
{
rlc_um_nr_test_context1 ctxt;
const uint32_t num_sdus = 10;
const uint32_t sdu_size = 10;
ctxt.tester.set_expected_sdu_len(sdu_size);
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[num_sdus];
for (uint32_t i = 0; i < num_sdus; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
// Write the index into the buffer
for (uint32_t k = 0; k < sdu_size; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_size;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// FIXME: check buffer state calculation
// TESTASSERT(103 == ctxt.rlc1.get_buffer_state());
// Read PDUs from RLC1 with grant of 8 Bytes each
const uint32_t max_num_pdus = 20 * 2; // we need 2 PDUs for each SDU
uint32 num_pdus = 0;
unique_byte_buffer_t pdu_bufs[max_num_pdus];
while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) {
pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true);
int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 8); // 3 bytes for header + payload
pdu_bufs[num_pdus]->N_bytes = len;
// write PCAP
write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes);
num_pdus++;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write PDUs into RLC2 (except 2nd)
for (uint32_t i = 0; i < num_pdus; i++) {
if (i != 2) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
// let t-reassembly expire
while (ctxt.timers.nof_running_timers() != 0) {
ctxt.timers.step_all();
}
TESTASSERT(num_sdus - 1 == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size);
}
rlc_bearer_metrics_t rlc2_metrics = ctxt.rlc2.get_metrics();
TESTASSERT(rlc2_metrics.num_lost_pdus == 1);
return SRSLTE_SUCCESS;
}
int main(int argc, char** argv)
{
#if PCAP
pcap_handle = std::unique_ptr<srslte::mac_nr_pcap>(new srslte::mac_nr_pcap());
pcap_handle->open("rlc_um_nr_test.pcap");
#endif
if (rlc_um_nr_test1()) {
fprintf(stderr, "rlc_um_nr_test1() failed.\n");
return SRSLTE_ERROR;
}
if (rlc_um_nr_test2()) {
fprintf(stderr, "rlc_um_nr_test2() failed.\n");
return SRSLTE_ERROR;
}
// same like above but PDUs delivered in reverse order
if (rlc_um_nr_test2(true)) {
fprintf(stderr, "rlc_um_nr_test2(true) failed.\n");
return SRSLTE_ERROR;
}
if (rlc_um_nr_test4()) {
fprintf(stderr, "rlc_um_nr_test4() failed.\n");
return SRSLTE_ERROR;
}
for (uint32_t i = 0; i < 5; ++i) {
if (rlc_um_nr_test5(i)) {
fprintf(stderr, "rlc_um_nr_test5() for i=%d failed.\n", i);
return SRSLTE_ERROR;
}
}
if (rlc_um_nr_test6()) {
fprintf(stderr, "rlc_um_nr_test6() failed.\n");
return SRSLTE_ERROR;
}
if (rlc_um_nr_test7()) {
fprintf(stderr, "rlc_um_nr_test7() failed.\n");
return SRSLTE_ERROR;
}
if (rlc_um_nr_test8()) {
fprintf(stderr, "rlc_um_nr_test8() failed.\n");
return SRSLTE_ERROR;
}
return SRSLTE_SUCCESS;
}