You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

420 lines
13 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "rlc_test_common.h"
#include "srslte/common/log_filter.h"
#include "srslte/upper/rlc_um_lte.h"
#include <iostream>
#define TESTASSERT(cond) \
{ \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return -1; \
} \
}
#define MAX_NBUFS 100
#define NBUFS 5
using namespace srslte;
using namespace srsue;
using namespace asn1::rrc;
// Helper class to create two pre-configured RLC instances
class rlc_um_lte_test_context1
{
public:
rlc_um_lte_test_context1() :
log1("RLC_UM_1"),
log2("RLC_UM_2"),
timers(16),
rlc1(&log1, 3, &tester, &tester, &timers),
rlc2(&log2, 3, &tester, &tester, &timers)
{
// setup logging
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
// configure RLC entities
rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(10);
if (rlc1.configure(cnfg) != true) {
fprintf(stderr, "Couldn't configure RLC1 object\n");
}
if (rlc2.configure(cnfg) != true) {
fprintf(stderr, "Couldn't configure RLC2 object\n");
}
tester.set_expected_sdu_len(1);
}
srslte::log_filter log1, log2;
srslte::timer_handler timers;
rlc_um_tester tester;
rlc_um_lte rlc1, rlc2;
};
int meas_obj_test()
{
rlc_um_lte_test_context1 ctxt;
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
*sdu_bufs[i]->msg = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(14 == ctxt.rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
byte_buffer_t pdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
int len = ctxt.rlc1.read_pdu(pdu_bufs[i].msg, 4); // 3 bytes for header + payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
ctxt.rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(NBUFS == ctxt.tester.get_num_sdus());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == 1);
TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i);
}
return 0;
}
int loss_test()
{
rlc_um_lte_test_context1 ctxt;
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(14 == ctxt.rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
byte_buffer_t pdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
int len = ctxt.rlc1.read_pdu(pdu_bufs[i].msg, 4); // 3 bytes for header + payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write 5 PDUs into RLC2 (skip SN 1)
for (int i = 0; i < NBUFS; i++) {
if (i != 1) {
ctxt.rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
}
// Step the reordering timer until expiry
while (ctxt.timers.nof_running_timers() != 0) {
ctxt.timers.step_all();
}
TESTASSERT(NBUFS - 1 == ctxt.tester.sdus.size());
return 0;
}
int basic_mbsfn_test()
{
rlc_um_lte_test_context1 ctxt;
// configure as MCH
ctxt.rlc1.configure(rlc_config_t::mch_config());
ctxt.rlc2.configure(rlc_config_t::mch_config());
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS * 2];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(13 == ctxt.rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
byte_buffer_t pdu_bufs[NBUFS * 2];
for (int i = 0; i < NBUFS; i++) {
int len = ctxt.rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 bytes for header + payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
ctxt.rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
TESTASSERT(0 == ctxt.rlc2.get_buffer_state());
TESTASSERT(NBUFS == ctxt.tester.sdus.size());
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) {
TESTASSERT(ctxt.tester.sdus[i]->N_bytes == 1);
TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i);
}
return 0;
}
// This test checks the reassembly routines when a PDU
// is lost that contains the beginning of SDU segment.
// The PDU that contains the end of this SDU _also_ contains
// a segment of another SDU.
// On reassembly of the SDUs, the missing start segment
// should be detected and the complete SDU be discarded
// Therefore, one SDU less should be received than was tx'ed.
// This test sends PDU in two batches so it's not the reordering
// timeout that detects the missing PDU but the fact more
// PDUs than rx_mod are received.
int reassmble_test()
{
rlc_um_lte_test_context1 ctxt;
// reconfigure them with 5bit SNs
rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(5);
ctxt.rlc1.configure(cnfg);
ctxt.rlc2.configure(cnfg);
// Push SDUs into RLC1
const int n_sdus = 25;
const int sdu_len = 100;
ctxt.tester.set_expected_sdu_len(sdu_len);
const int n_sdu_first_batch = 17;
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[n_sdus];
for (int i = 0; i < n_sdu_first_batch; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for (int k = 0; k < sdu_len; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read PDUs from RLC1 (use smaller grant for first PDU and large for the rest)
const int max_n_pdus = 100;
int n_pdus = 0;
byte_buffer_t* pdu_bufs[max_n_pdus];
for (int i = 0; i < max_n_pdus; i++) {
pdu_bufs[i] = byte_buffer_pool::get_instance()->allocate();
int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, (i == 0) ? sdu_len * 3 / 4 : sdu_len * 1.25);
pdu_bufs[i]->N_bytes = len;
if (len) {
n_pdus++;
} else {
break;
}
}
printf("Generated %d PDUs in first batch\n", n_pdus);
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// push second batch of SDUs
for (int i = n_sdu_first_batch; i < n_sdus; ++i) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for (int k = 0; k < sdu_len; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read second batch of PDUs (use large grants)
for (int i = n_pdus; i < max_n_pdus; i++) {
pdu_bufs[i] = byte_buffer_pool::get_instance()->allocate();
int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, sdu_len * 1.25);
pdu_bufs[i]->N_bytes = len;
if (len) {
n_pdus++;
} else {
// stop reading PDUs after first zero length PDU
break;
}
}
printf("Generated %d PDUs in total\n", n_pdus);
// Write all PDUs into RLC2 except first one
for (int i = 0; i < n_pdus; i++) {
if (i != 0) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
// We should have received one SDU less than we tx'ed
TESTASSERT(ctxt.tester.sdus.size() == n_sdus - 1);
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); ++i) {
TESTASSERT(ctxt.tester.sdus[i]->N_bytes == sdu_len);
}
return 0;
}
// This reassmble test checks the reassembly routines when a PDU
// is lost that _only_ contains the beginning of SDU segment,
// while the next PDU contains the middle part of this SDU (and
// yet another PDU the end part).
// On reassembly of the SDUs, the missing start segment
// should be detected and the complete SDU be discarded
// Therefore, one SDU less should be received than was tx'ed.
int reassmble_test2()
{
rlc_um_lte_test_context1 ctxt;
// reconfigure them with 5bit SNs
rlc_config_t cnfg = rlc_config_t::default_rlc_um_config(5);
ctxt.rlc1.configure(cnfg);
ctxt.rlc2.configure(cnfg);
// Push SDUs into RLC1
const int n_sdus = 25;
const int sdu_len = 100;
ctxt.tester.set_expected_sdu_len(sdu_len);
const int n_sdu_first_batch = 17;
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[n_sdus];
for (int i = 0; i < n_sdu_first_batch; i++) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for (int k = 0; k < sdu_len; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_len;
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
const int max_n_pdus = 100;
int n_pdus = 0;
byte_buffer_t* pdu_bufs[max_n_pdus];
for (int i = 0; i < max_n_pdus; i++) {
pdu_bufs[i] = byte_buffer_pool::get_instance()->allocate();
int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, (i == 0) ? sdu_len * .75 : sdu_len * .25);
pdu_bufs[i]->N_bytes = len;
if (len) {
n_pdus++;
} else {
break;
}
}
printf("Generated %d PDUs in first batch\n", n_pdus);
TESTASSERT(0 == ctxt.rlc1.get_buffer_state());
// push second batch of SDUs
for (int i = n_sdu_first_batch; i < n_sdus; ++i) {
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for (int k = 0; k < sdu_len; ++k) {
sdu_bufs[i]->msg[k] = i;
}
sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte
ctxt.rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read second batch of PDUs
for (int i = n_pdus; i < max_n_pdus; i++) {
pdu_bufs[i] = byte_buffer_pool::get_instance()->allocate();
int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, sdu_len * 1.25);
pdu_bufs[i]->N_bytes = len;
if (len) {
n_pdus++;
} else {
break;
}
}
printf("Generated %d PDUs in total\n", n_pdus);
// Write all PDUs into RLC2 except first one
for (int i = 0; i < n_pdus; i++) {
if (i != 0) {
ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes);
}
}
// We should have received one SDU less than we tx'ed
TESTASSERT(ctxt.tester.sdus.size() == n_sdus - 1);
for (uint32_t i = 0; i < ctxt.tester.sdus.size(); ++i) {
TESTASSERT(ctxt.tester.sdus[i]->N_bytes == sdu_len);
}
return 0;
}
int main(int argc, char** argv)
{
if (meas_obj_test()) {
return -1;
}
byte_buffer_pool::get_instance()->cleanup();
if (loss_test()) {
return -1;
}
byte_buffer_pool::get_instance()->cleanup();
if (basic_mbsfn_test()) {
return -1;
}
byte_buffer_pool::get_instance()->cleanup();
if (reassmble_test()) {
return -1;
}
byte_buffer_pool::get_instance()->cleanup();
if (reassmble_test2()) {
return -1;
}
byte_buffer_pool::get_instance()->cleanup();
}