You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

343 lines
11 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>
#include <assert.h>
#include <signal.h>
#include "srslte/rrc/rrc.h"
#include "srslte/srslte.h"
#include "srslte/cuhd/cuhd.h"
#include "cuhd_utils.h"
#define B210_DEFAULT_GAIN 40.0
#define B210_DEFAULT_GAIN_CORREC 110.0 // Gain of the Rx chain when the gain is set to 40
float gain_offset = B210_DEFAULT_GAIN_CORREC;
cell_search_cfg_t cell_detect_config = {
5000, // maximum number of frames to receive for MIB decoding
50, // maximum number of frames to receive for PSS correlation
16.0 // early-stops cell detection if mean PSR is above this value
};
/**********************************************************************
* Program arguments processing
***********************************************************************/
typedef struct {
int nof_subframes;
bool disable_plots;
int force_N_id_2;
char *uhd_args;
float uhd_freq;
float uhd_gain;
}prog_args_t;
void args_default(prog_args_t *args) {
args->nof_subframes = -1;
args->force_N_id_2 = -1; // Pick the best
args->uhd_args = "";
args->uhd_freq = -1.0;
args->uhd_gain = B210_DEFAULT_GAIN;
}
void usage(prog_args_t *args, char *prog) {
printf("Usage: %s [aglnv] -f rx_frequency (in Hz)\n", prog);
printf("\t-a UHD args [Default %s]\n", args->uhd_args);
printf("\t-g UHD RX gain [Default %.2f dB]\n", args->uhd_gain);
printf("\t-l Force N_id_2 [Default best]\n");
printf("\t-n nof_subframes [Default %d]\n", args->nof_subframes);
printf("\t-v [set verbose to debug, default none]\n");
}
int parse_args(prog_args_t *args, int argc, char **argv) {
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "aglnvf")) != -1) {
switch (opt) {
case 'a':
args->uhd_args = argv[optind];
break;
case 'g':
args->uhd_gain = atof(argv[optind]);
break;
case 'f':
args->uhd_freq = atof(argv[optind]);
break;
case 'n':
args->nof_subframes = atoi(argv[optind]);
break;
case 'l':
args->force_N_id_2 = atoi(argv[optind]);
break;
case 'v':
verbose++;
break;
default:
usage(args, argv[0]);
return -1;
}
}
if (args->uhd_freq < 0) {
usage(args, argv[0]);
return -1;
}
return 0;
}
/**********************************************************************/
/* TODO: Do something with the output data */
uint8_t data[10000], data_unpacked[1000];
int cuhd_recv_wrapper(void *h, void *data, uint32_t nsamples, srslte_timestamp_t *q) {
DEBUG(" ---- Receive %d samples ---- \n", nsamples);
return cuhd_recv(h, data, nsamples, 1);
}
enum receiver_state { DECODE_MIB, DECODE_SIB, MEASURE} state;
#define MAX_SINFO 10
#define MAX_NEIGHBOUR_CELLS 128
int main(int argc, char **argv) {
int ret;
cf_t *sf_buffer;
prog_args_t prog_args;
srslte_cell_t cell;
int64_t sf_cnt;
ue_sync_t ue_sync;
ue_mib_t ue_mib;
void *uhd;
ue_dl_t ue_dl;
srslte_fft_t fft;
srslte_chest_dl_t chest;
uint32_t nframes=0;
uint32_t nof_trials = 0;
uint32_t sfn = 0; // system frame number
int n;
uint8_t bch_payload[BCH_PAYLOAD_LEN], bch_payload_unpacked[BCH_PAYLOAD_LEN];
uint32_t sfn_offset;
float rssi_utra=0,rssi=0, rsrp=0, rsrq=0, snr=0;
cf_t *ce[SRSLTE_MAX_PORTS];
if (parse_args(&prog_args, argc, argv)) {
exit(-1);
}
printf("Opening UHD device...\n");
if (cuhd_open(prog_args.uhd_args, &uhd)) {
fprintf(stderr, "Error opening uhd\n");
return -1;
}
/* Set receiver gain */
cuhd_set_rx_gain(uhd, prog_args.uhd_gain);
/* set receiver frequency */
cuhd_set_rx_freq(uhd, (double) prog_args.uhd_freq);
cuhd_rx_wait_lo_locked(uhd);
printf("Tunning receiver to %.3f MHz\n", (double ) prog_args.uhd_freq/1000000);
ret = cuhd_search_and_decode_mib(uhd, &cell_detect_config, prog_args.force_N_id_2, &cell);
if (ret < 0) {
fprintf(stderr, "Error searching cell\n");
return -1;
} else if (ret == 0) {
printf("Cell not found\n");
exit(0);
}
/* set sampling frequency */
int srate = srslte_sampling_freq_hz(cell.nof_prb);
if (srate != -1) {
cuhd_set_rx_srate(uhd, (double) srate);
} else {
fprintf(stderr, "Invalid number of PRB %d\n", cell.nof_prb);
return SRSLTE_ERROR;
}
INFO("Stopping UHD and flushing buffer...\n",0);
cuhd_stop_rx_stream(uhd);
cuhd_flush_buffer(uhd);
if (ue_sync_init(&ue_sync, cell, cuhd_recv_wrapper, uhd)) {
fprintf(stderr, "Error initiating ue_sync\n");
return -1;
}
if (ue_dl_init(&ue_dl, cell)) {
fprintf(stderr, "Error initiating UE downlink processing module\n");
return -1;
}
if (ue_mib_init(&ue_mib, cell)) {
fprintf(stderr, "Error initaiting UE MIB decoder\n");
return -1;
}
/* Configure downlink receiver for the SI-RNTI since will be the only one we'll use */
ue_dl_set_rnti(&ue_dl, SRSLTE_SIRNTI);
/* Initialize subframe counter */
sf_cnt = 0;
if (srslte_fft_init(&fft, cell.cp, cell.nof_prb)) {
fprintf(stderr, "Error initiating FFT\n");
return -1;
}
if (srslte_chest_dl_init(&chest, cell)) {
fprintf(stderr, "Error initiating channel estimator\n");
return -1;
}
int sf_re = SRSLTE_SF_LEN_RE(cell.nof_prb, cell.cp);
cf_t *sf_symbols = vec_malloc(sf_re * sizeof(cf_t));
for (int i=0;i<SRSLTE_MAX_PORTS;i++) {
ce[i] = vec_malloc(sizeof(cf_t) * sf_re);
}
cuhd_start_rx_stream(uhd);
/* Main loop */
while (sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1) {
ret = ue_sync_get_buffer(&ue_sync, &sf_buffer);
if (ret < 0) {
fprintf(stderr, "Error calling ue_sync_work()\n");
}
/* ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */
if (ret == 1) {
switch (state) {
case DECODE_MIB:
if (ue_sync_get_sfidx(&ue_sync) == 0) {
pbch_decode_reset(&ue_mib.pbch);
n = ue_mib_decode(&ue_mib, sf_buffer, bch_payload_unpacked, NULL, &sfn_offset);
if (n < 0) {
fprintf(stderr, "Error decoding UE MIB\n");
return -1;
} else if (n == MIB_FOUND) {
bit_unpack_vector(bch_payload_unpacked, bch_payload, BCH_PAYLOAD_LEN);
bcch_bch_unpack(bch_payload, BCH_PAYLOAD_LEN, &cell, &sfn);
printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset);
sfn = (sfn + sfn_offset)%1024;
state = DECODE_SIB;
}
}
break;
case DECODE_SIB:
/* We are looking for SI Blocks, search only in appropiate places */
if ((ue_sync_get_sfidx(&ue_sync) == 5 && (sfn%2)==0)) {
n = ue_dl_decode_rnti_rv(&ue_dl, sf_buffer, data, ue_sync_get_sfidx(&ue_sync), SRSLTE_SIRNTI,
((int) ceilf((float)3*(((sfn)/2)%4)/2))%4);
if (n < 0) {
fprintf(stderr, "Error decoding UE DL\n");fflush(stdout);
return -1;
} else if (n == 0) {
printf("CFO: %+6.4f KHz, SFO: %+6.4f Khz, NOI: %.2f, PDCCH-Det: %.3f\r",
ue_sync_get_cfo(&ue_sync)/1000, ue_sync_get_sfo(&ue_sync)/1000,
sch_average_noi(&ue_dl.pdsch.dl_sch),
(float) ue_dl.nof_pdcch_detected/nof_trials);
nof_trials++;
} else {
bit_unpack_vector(data, data_unpacked, n);
void *dlsch_msg = bcch_dlsch_unpack(data_unpacked, n);
if (dlsch_msg) {
printf("\n");fflush(stdout);
cell_access_info_t cell_info;
bcch_dlsch_sib1_get_cell_access_info(dlsch_msg, &cell_info);
printf("Decoded SIB1. Cell ID: 0x%x\n", cell_info.cell_id);
bcch_dlsch_fprint(dlsch_msg, stdout);
state = MEASURE;
}
}
}
break;
case MEASURE:
if (ue_sync_get_sfidx(&ue_sync) == 5) {
/* Run FFT for all subframe data */
srslte_fft_run_sf(&fft, sf_buffer, sf_symbols);
srslte_chest_dl_estimate(&chest, sf_symbols, ce, ue_sync_get_sfidx(&ue_sync));
rssi = VEC_CMA(vec_avg_power_cf(sf_buffer,SRSLTE_SF_LEN(srslte_symbol_sz(cell.nof_prb))),rssi,nframes);
rssi_utra = VEC_CMA(srslte_chest_dl_get_rssi(&chest),rssi_utra,nframes);
rsrq = VEC_EMA(srslte_chest_dl_get_rsrq(&chest),rsrq,0.05);
rsrp = VEC_EMA(srslte_chest_dl_get_rsrp(&chest),rsrp,0.05);
snr = VEC_EMA(srslte_chest_dl_get_snr(&chest),snr,0.05);
nframes++;
}
// Plot and Printf
if ((nframes%10) == 0) {
printf("CFO: %+8.4f KHz, SFO: %+8.4f Khz, RSSI: %5.1f dBm, RSSI/ref-symbol: %+5.1f dBm, "
"RSRP: %+5.1f dBm, RSRQ: %5.1f dB, SNR: %5.1f dB\r",
ue_sync_get_cfo(&ue_sync)/1000, ue_sync_get_sfo(&ue_sync)/1000,
10*log10(rssi*1000)-gain_offset,
10*log10(rssi_utra*1000)-gain_offset,
10*log10(rsrp*1000)-gain_offset,
10*log10(rsrq), 10*log10(snr));
if (verbose != VERBOSE_NONE) {
printf("\n");
}
}
break;
}
if (ue_sync_get_sfidx(&ue_sync) == 9) {
sfn++;
if (sfn == 1024) {
sfn = 0;
}
}
} else if (ret == 0) {
printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r",
sync_get_peak_value(&ue_sync.sfind),
ue_sync.frame_total_cnt, ue_sync.state);
}
sf_cnt++;
} // Main loop
ue_sync_free(&ue_sync);
cuhd_close(uhd);
printf("\nBye\n");
exit(0);
}