You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

652 lines
20 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The libLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the libLTE library.
*
* libLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>
#include <assert.h>
#include <signal.h>
#include <pthread.h>
#include <semaphore.h>
#include "liblte/rrc/rrc.h"
#include "liblte/phy/phy.h"
#include "liblte/cuhd/cuhd.h"
#include "cuhd_utils.h"
cell_search_cfg_t cell_detect_config = {
5000,
100, // nof_frames_total
16.0 // threshold
};
#define B210_DEFAULT_GAIN 40.0
#define B210_DEFAULT_GAIN_CORREC 110.0 // Gain of the Rx chain when the gain is set to 40
float gain_offset = B210_DEFAULT_GAIN_CORREC;
/**********************************************************************
* Program arguments processing
***********************************************************************/
typedef struct {
int nof_subframes;
int force_N_id_2;
uint16_t rnti;
uint32_t file_nof_prb;
char *uhd_args;
float uhd_rx_freq;
float uhd_tx_freq;
float uhd_tx_freq_offset;
float uhd_tx_gain;
float uhd_rx_gain;
}prog_args_t;
void args_default(prog_args_t *args) {
args->nof_subframes = -1;
args->rnti = SIRNTI;
args->force_N_id_2 = -1; // Pick the best
args->file_nof_prb = 6;
args->uhd_args = "";
args->uhd_rx_freq = 2112500000.0;
args->uhd_tx_freq = 1922500000.0;
args->uhd_tx_freq_offset = 8000000.0;
args->uhd_tx_gain = 60.0;
args->uhd_rx_gain = 60.0;
}
void usage(prog_args_t *args, char *prog) {
printf("Usage: %s [agfFrlnv]\n", prog);
printf("\t-a UHD args [Default %s]\n", args->uhd_args);
printf("\t-g UHD TX/RX gain [Default %.2f dB]\n", args->uhd_rx_gain);
printf("\t-G UHD TX/RX gain [Default %.2f dB]\n", args->uhd_tx_gain);
printf("\t-f UHD RX freq [Default %.1f MHz]\n", args->uhd_rx_freq/1000000);
printf("\t-F UHD TX freq [Default %.1f MHz]\n", args->uhd_tx_freq/1000000);
printf("\t-r RNTI [Default 0x%x]\n",args->rnti);
printf("\t-l Force N_id_2 [Default best]\n");
printf("\t-n nof_subframes [Default %d]\n", args->nof_subframes);
printf("\t-v [set verbose to debug, default none]\n");
}
void parse_args(prog_args_t *args, int argc, char **argv) {
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "agGfFrlnv")) != -1) {
switch (opt) {
case 'a':
args->uhd_args = argv[optind];
break;
case 'g':
args->uhd_rx_gain = atof(argv[optind]);
break;
case 'G':
args->uhd_tx_gain = atof(argv[optind]);
break;
case 'f':
args->uhd_rx_freq = atof(argv[optind]);
break;
case 'F':
args->uhd_tx_freq = atof(argv[optind]);
break;
case 'n':
args->nof_subframes = atoi(argv[optind]);
break;
case 'r':
args->rnti = atoi(argv[optind]);
break;
case 'l':
args->force_N_id_2 = atoi(argv[optind]);
break;
case 'v':
verbose++;
break;
default:
usage(args, argv[0]);
exit(-1);
}
}
if (args->uhd_tx_freq < 0 && args->uhd_rx_freq < 0) {
usage(args, argv[0]);
exit(-1);
}
}
/**********************************************************************/
/* TODO: Do something with the output data */
uint8_t data_rx[20000];
bool go_exit = false;
void sig_int_handler(int signo)
{
if (signo == SIGINT) {
go_exit = true;
}
}
int cuhd_recv_wrapper_timed(void *h, void *data, uint32_t nsamples, timestamp_t *uhd_time) {
DEBUG(" ---- Receive %d samples ---- \n", nsamples);
return cuhd_recv_with_time(h, data, nsamples, true, &uhd_time->full_secs, &uhd_time->frac_secs);
}
extern float mean_exec_time;
enum receiver_state { DECODE_MIB, SEND_PRACH, RECV_RAR} state;
#define NOF_PRACH_SEQUENCES 52
ue_dl_t ue_dl;
ue_ul_t ue_ul;
ue_sync_t ue_sync;
prach_t prach;
cf_t *prach_buffers[NOF_PRACH_SEQUENCES];
int prach_buffer_len;
prog_args_t prog_args;
uint32_t sfn = 0; // system frame number
cf_t *sf_buffer = NULL;
int generate_prach_sequences(){
for(int i=0;i<NOF_PRACH_SEQUENCES;i++){
if(prach_gen(&prach, i, 0, prach_buffers[i])){
fprintf(stderr, "Error generating prach sequence\n");
return -1;
}
}
return 0;
}
typedef enum{
rar_tpc_n6dB = 0,
rar_tpc_n4dB,
rar_tpc_n2dB,
rar_tpc_0dB,
rar_tpc_2dB,
rar_tpc_4dB,
rar_tpc_6dB,
rar_tpc_8dB,
rar_tpc_n_items,
}rar_tpc_command_t;
static const char tpc_command_text[rar_tpc_n_items][8] = {"-6dB", "-4dB", "-2dB", "0dB", "2dB", "4dB", "6dB", "8dB"};
typedef enum{
rar_header_type_bi = 0,
rar_header_type_rapid,
rar_header_type_n_items,
}rar_header_t;
static const char rar_header_text[rar_header_type_n_items][8] = {"BI", "RAPID"};
typedef struct {
rar_header_t hdr_type;
bool hopping_flag;
rar_tpc_command_t tpc_command;
bool ul_delay;
bool csi_req;
uint16_t rba;
uint16_t timing_adv_cmd;
uint16_t temp_c_rnti;
uint8_t mcs;
uint8_t RAPID;
uint8_t BI;
}rar_msg_t;
char *bool_to_string(bool x) {
if (x) {
return "Enabled";
} else {
return "Disabled";
}
}
void rar_msg_fprint(FILE *stream, rar_msg_t *msg)
{
fprintf(stream, "Header type: %s\n", rar_header_text[msg->hdr_type]);
fprintf(stream, "Hopping flag: %s\n", bool_to_string(msg->hopping_flag));
fprintf(stream, "TPC command: %s\n", tpc_command_text[msg->tpc_command]);
fprintf(stream, "UL delay: %s\n", bool_to_string(msg->ul_delay));
fprintf(stream, "CSI required: %s\n", bool_to_string(msg->csi_req));
fprintf(stream, "RBA: %d\n", msg->rba);
fprintf(stream, "TA: %d\n", msg->timing_adv_cmd);
fprintf(stream, "T-CRNTI: %d\n", msg->temp_c_rnti);
fprintf(stream, "MCS: %d\n", msg->mcs);
fprintf(stream, "RAPID: %d\n", msg->RAPID);
fprintf(stream, "BI: %d\n", msg->BI);
}
int rar_unpack(uint8_t *buffer, rar_msg_t *msg)
{
int ret = LIBLTE_ERROR;
uint8_t *ptr = buffer;
if(buffer != NULL &&
msg != NULL)
{
ptr++;
msg->hdr_type = *ptr++;
if(msg->hdr_type == rar_header_type_bi) {
ptr += 2;
msg->BI = bit_unpack(&ptr, 4);
ret = LIBLTE_SUCCESS;
} else if (msg->hdr_type == rar_header_type_rapid) {
msg->RAPID = bit_unpack(&ptr, 6);
ptr++;
msg->timing_adv_cmd = bit_unpack(&ptr, 11);
msg->hopping_flag = *ptr++;
msg->rba = bit_unpack(&ptr, 10);
msg->mcs = bit_unpack(&ptr, 4);
msg->tpc_command = (rar_tpc_command_t) bit_unpack(&ptr, 3);
msg->ul_delay = *ptr++;
msg->csi_req = *ptr++;
msg->temp_c_rnti = bit_unpack(&ptr, 16);
ret = LIBLTE_SUCCESS;
}
}
return(ret);
}
#define kk
#define use_usrp
int main(int argc, char **argv) {
int ret;
lte_cell_t cell;
int64_t sf_cnt;
ue_mib_t ue_mib;
void *uhd;
int n;
uint8_t bch_payload[BCH_PAYLOAD_LEN], bch_payload_unpacked[BCH_PAYLOAD_LEN];
uint32_t sfn_offset;
rar_msg_t rar_msg;
ra_pusch_t ra_pusch;
uint32_t rar_window_start = 0, rar_trials = 0, rar_window_stop = 0;
timestamp_t uhd_time;
timestamp_t next_tx_time;
const uint8_t conn_request_msg[] = {0x20, 0x06, 0x1F, 0x5C, 0x2C, 0x04, 0xB2, 0xAC, 0xF6, 0x00, 0x00, 0x00};
uint8_t data[500];
parse_args(&prog_args, argc, argv);
#ifdef use_usrp
printf("Opening UHD device...\n");
if (cuhd_open(prog_args.uhd_args, &uhd)) {
fprintf(stderr, "Error opening uhd\n");
exit(-1);
}
/* Set receiver gain */
float x = cuhd_set_rx_gain(uhd, prog_args.uhd_rx_gain);
printf("Set RX gain to %.1f dB\n", x);
x = cuhd_set_tx_gain(uhd, prog_args.uhd_tx_gain);
printf("Set TX gain to %.1f dB\n", x);
/* set receiver frequency */
cuhd_set_rx_freq(uhd, (double) prog_args.uhd_rx_freq);
cuhd_rx_wait_lo_locked(uhd);
printf("Tunning RX receiver to %.3f MHz\n", (double ) prog_args.uhd_rx_freq/1000000);
cuhd_set_tx_freq_offset(uhd, prog_args.uhd_tx_freq, prog_args.uhd_tx_freq_offset);
printf("Tunning TX receiver to %.3f MHz\n", (double ) prog_args.uhd_tx_freq/1000000);
#endif
#ifdef kk
ret = cuhd_search_and_decode_mib(uhd, &cell_detect_config, prog_args.force_N_id_2, &cell);
if (ret < 0) {
fprintf(stderr, "Error searching for cell\n");
exit(-1);
} else if (ret == 0) {
printf("Cell not found\n");
exit(0);
}
#else
cell.id = 1;
cell.nof_ports = 1;
cell.nof_prb = 25;
cell.cp = CPNORM;
cell.phich_length = PHICH_NORM;
cell.phich_resources = R_1;
#endif
#ifdef use_usrp
/* set sampling frequency */
int srate = lte_sampling_freq_hz(cell.nof_prb);
if (srate != -1) {
cuhd_set_rx_srate(uhd, (double) srate);
cuhd_set_tx_srate(uhd, (double) srate);
} else {
fprintf(stderr, "Invalid number of PRB %d\n", cell.nof_prb);
exit(-1);
}
INFO("Stopping UHD and flushing buffer...\r",0);
cuhd_stop_rx_stream(uhd);
cuhd_flush_buffer(uhd);
#endif
if (ue_mib_init(&ue_mib, cell)) {
fprintf(stderr, "Error initaiting UE MIB decoder\n");
exit(-1);
}
if (prach_init(&prach, lte_symbol_sz(cell.nof_prb), 0, 0, false, 1)) {
fprintf(stderr, "Error initializing PRACH\n");
exit(-1);
}
prach_buffer_len = prach.N_seq + prach.N_cp;
for(int i=0;i<NOF_PRACH_SEQUENCES;i++){
prach_buffers[i] = (cf_t*)malloc(prach_buffer_len*sizeof(cf_t));
if(!prach_buffers[i]) {
perror("maloc");
exit(-1);
}
}
generate_prach_sequences();
if (ue_ul_init(&ue_ul, cell)) {
fprintf(stderr, "Error initiating UE UL\n");
exit(-1);
}
pusch_hopping_cfg_t hop_cfg;
bzero(&hop_cfg, sizeof(pusch_hopping_cfg_t));
refsignal_drms_pusch_cfg_t drms_cfg;
bzero(&drms_cfg, sizeof(refsignal_drms_pusch_cfg_t));
drms_cfg.beta_pusch = 1.0;
drms_cfg.group_hopping_en = false;
drms_cfg.sequence_hopping_en = false;
drms_cfg.common.delta_ss = 0;
drms_cfg.common.cyclic_shift = 0;
drms_cfg.common.cyclic_shift_for_drms = 0;
drms_cfg.common.en_drms_2 = false;
ue_ul_set_pusch_cfg(&ue_ul, &drms_cfg, &hop_cfg);
cf_t *ul_signal = vec_malloc(sizeof(cf_t) * SF_LEN_PRB(cell.nof_prb));
if (!ul_signal) {
perror("malloc");
exit(-1);
}
bzero(ul_signal, sizeof(cf_t) * SF_LEN_PRB(cell.nof_prb));
if (ue_dl_init(&ue_dl, cell)) {
fprintf(stderr, "Error initiating UE downlink processing module\n");
exit(-1);
}
/* Initialize subframe counter */
sf_cnt = 0;
#ifdef use_usrp
if (ue_sync_init(&ue_sync, cell, cuhd_recv_wrapper_timed, uhd)) {
fprintf(stderr, "Error initiating ue_sync\n");
exit(-1);
}
cuhd_start_rx_stream(uhd);
#endif
uint16_t ra_rnti;
#ifdef kk
// Register Ctrl+C handler
signal(SIGINT, sig_int_handler);
state = DECODE_MIB;
#else
state = RECV_RAR;
#endif
/* Main loop */
while (!go_exit && (sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1)) {
#ifdef kk
ret = ue_sync_get_buffer(&ue_sync, &sf_buffer);
if (ret < 0) {
fprintf(stderr, "Error calling ue_sync_work()\n");
}
#else
ret = 1;
timestamp_t rx_time, tx_time;
cf_t dummy[4];
#endif
/* ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */
if (ret == 1) {
if (state != RECV_RAR) {
/* Run FFT for all subframe data */
lte_fft_run_sf(&ue_dl.fft, sf_buffer, ue_dl.sf_symbols);
/* Get channel estimates for each port */
chest_dl_estimate(&ue_dl.chest, ue_dl.sf_symbols, ue_dl.ce, ue_sync_get_sfidx(&ue_sync));
}
if (sf_cnt > 1000) {
switch (state) {
case DECODE_MIB:
if (ue_sync_get_sfidx(&ue_sync) == 0) {
pbch_decode_reset(&ue_mib.pbch);
n = ue_mib_decode(&ue_mib, sf_buffer, bch_payload_unpacked, NULL, &sfn_offset);
if (n < 0) {
fprintf(stderr, "Error decoding UE MIB\n");
exit(-1);
} else if (n == MIB_FOUND) {
bit_unpack_vector(bch_payload_unpacked, bch_payload, BCH_PAYLOAD_LEN);
bcch_bch_unpack(bch_payload, BCH_PAYLOAD_LEN, &cell, &sfn);
printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset);
sfn = (sfn + sfn_offset)%1024;
state = SEND_PRACH;
}
}
break;
case SEND_PRACH:
#ifdef kk
if (((sfn%2) == 1) && (ue_sync_get_sfidx(&ue_sync) == 1)) {
ue_sync_get_last_timestamp(&ue_sync, &uhd_time);
timestamp_copy(&next_tx_time, &uhd_time);
timestamp_add(&next_tx_time, 0, 0.01); // send next frame (10 ms)
printf("Send prach sfn: %d. Last frame time = %.6f, send prach time = %.6f\n",
sfn, timestamp_real(&uhd_time), timestamp_real(&next_tx_time));
cuhd_send_timed(uhd, prach_buffers[7], prach_buffer_len,
next_tx_time.full_secs, next_tx_time.frac_secs);
ra_rnti = 2;
rar_window_start = sfn+1;
rar_window_stop = sfn+3;
state = RECV_RAR;
}
#else
cuhd_recv_with_time(uhd, dummy, 4, 1, &rx_time.full_secs, &rx_time.frac_secs);
timestamp_copy(&tx_time, &rx_time);
printf("Transmitting PRACH...\n");
vec_save_file("prach_tx", prach_buffers[7], prach_buffer_len*sizeof(cf_t));
while(1) {
timestamp_add(&tx_time, 0, 0.001); // send every (10 ms)
cuhd_send_timed(uhd, prach_buffers[7], prach_buffer_len,
tx_time.full_secs, tx_time.frac_secs);
}
#endif
break;
case RECV_RAR:
#ifdef kk
if ((sfn == rar_window_start && ue_sync_get_sfidx(&ue_sync) > 3) || sfn > rar_window_start) {
printf("Looking for RAR in sfn: %d sf_idx: %d\n", sfn, ue_sync_get_sfidx(&ue_sync));
n = ue_dl_decode_rnti(&ue_dl, sf_buffer, data_rx, ue_sync_get_sfidx(&ue_sync), ra_rnti);
if (n < 0) {
fprintf(stderr, "Error decoding UE DL\n");fflush(stdout);
} else if (n > 0) {
cuhd_stop_rx_stream(uhd);
cuhd_flush_buffer(uhd);
rar_unpack(data_rx, &rar_msg);
rar_msg_fprint(stdout, &rar_msg);
dci_rar_to_ra_ul(rar_msg.rba, rar_msg.mcs, rar_msg.hopping_flag, cell.nof_prb, &ra_pusch);
ra_pusch_fprint(stdout, &ra_pusch, cell.nof_prb);
ra_ul_alloc(&ra_pusch.prb_alloc, &ra_pusch, 0, cell.nof_prb);
ue_sync_get_last_timestamp(&ue_sync, &uhd_time);
bit_pack_vector((uint8_t*) conn_request_msg, data, ra_pusch.mcs.tbs);
uint32_t n_ta = lte_N_ta_new_rar(rar_msg.timing_adv_cmd);
printf("ta: %d, n_ta: %d\n", rar_msg.timing_adv_cmd, n_ta);
float time_adv_sec = ((float) n_ta+15)/(15000.0*lte_symbol_sz(cell.nof_prb));
#define N_TX 5
const uint32_t rv[N_TX]={0,2,3,1,0};
for (int i=0; i<N_TX;i++) {
ra_pusch.rv_idx = rv[i];
uint32_t ul_sf_idx = (ue_sync_get_sfidx(&ue_sync)+6+i*8)%10;
n = ue_ul_pusch_encode_rnti(&ue_ul, &ra_pusch, data, ul_sf_idx, rar_msg.temp_c_rnti, ul_signal);
if (n < 0) {
fprintf(stderr, "Error encoding PUSCH\n");
exit(-1);
}
vec_sc_prod_cfc(ul_signal, 1.5, ul_signal, SF_LEN_PRB(cell.nof_prb));
/*
for (int i=0;i<7680;i++) {
if (i < 100) {
ul_signal[i] = 0;
} else {
ul_signal[i] = 0.5*cexpf(-I*2*M_PI*0.1*(float) i);
}
}
*/
vec_save_file("pusch_tx", ul_signal, sizeof(cf_t)*SF_LEN_PRB(cell.nof_prb));
timestamp_copy(&next_tx_time, &uhd_time);
timestamp_add(&next_tx_time, 0, 0.006 + i*0.008 - time_adv_sec); // send after 6 sub-frames (6 ms)
printf("Send %d samples PUSCH sfn: %d. RV_idx=%d, Last frame time = %.6f "
"send PUSCH time = %.6f TA: %.1f us\n",
SF_LEN_PRB(cell.nof_prb), sfn, ra_pusch.rv_idx,
timestamp_real(&uhd_time),
timestamp_real(&next_tx_time), time_adv_sec*1000000);
cuhd_send_timed(uhd, ul_signal, SF_LEN_PRB(cell.nof_prb),
next_tx_time.full_secs, next_tx_time.frac_secs);
}
go_exit = 1;
}
if (sfn >= rar_window_stop) {
state = SEND_PRACH;
rar_trials++;
if (rar_trials >= 1) {
go_exit = 1;
}
}
}
#else
ra_pusch.mcs.mod = LTE_QPSK;
ra_pusch.mcs.tbs = 94;
ra_pusch.rv_idx = 0;
ra_pusch.prb_alloc.freq_hopping = 0;
ra_pusch.prb_alloc.L_prb = 4;
ra_pusch.prb_alloc.n_prb[0] = 19;
ra_pusch.prb_alloc.n_prb[1] = 19;
uint32_t ul_sf_idx = 4;
printf("L: %d\n", ra_pusch.prb_alloc.L_prb);
// ue_ul_set_cfo(&ue_ul, sync_get_cfo(&ue_sync.strack));
bit_pack_vector((uint8_t*) conn_request_msg, data, ra_pusch.mcs.tbs);
n = ue_ul_pusch_encode_rnti(&ue_ul, &ra_pusch, data, ul_sf_idx, 111, ul_signal);
if (n < 0) {
fprintf(stderr, "Error encoding PUSCH\n");
exit(-1);
}
vec_save_file("pusch_tx", ul_signal, SF_LEN_PRB(cell.nof_prb)*sizeof(cf_t));
#ifdef use_usrp
cuhd_recv_with_time(uhd, dummy, 4, 1, &uhd_time.full_secs, &uhd_time.frac_secs);
timestamp_copy(&next_tx_time, &uhd_time);
while(1) {
timestamp_add(&next_tx_time, 0, 0.002); // send every 2 ms
cuhd_send_timed(uhd, ul_signal, SF_LEN_PRB(cell.nof_prb),
next_tx_time.full_secs, next_tx_time.frac_secs);
}
#else
exit(-1);
#endif
#endif
break;
}
if (ue_sync_get_sfidx(&ue_sync) == 9) {
sfn++;
if (sfn == 1024) {
sfn = 0;
}
}
}
} else if (ret == 0) {
printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r",
sync_get_peak_value(&ue_sync.sfind),
ue_sync.frame_total_cnt, ue_sync.state);
}
sf_cnt++;
} // Main loop
ue_dl_free(&ue_dl);
ue_sync_free(&ue_sync);
ue_mib_free(&ue_mib);
cuhd_close(uhd);
printf("\nBye\n");
exit(0);
}