You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1812 lines
49 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <iostream>
#include "srslte/common/log_filter.h"
#include "srslte/common/logger_stdout.h"
#include "srslte/common/threads.h"
#include "srslte/upper/rlc_am.h"
#include "srslte/common/rlc_pcap.h"
#include <assert.h>
#define NBUFS 5
#define HAVE_PCAP 0
#define SDU_SIZE 500
using namespace srsue;
using namespace srslte;
using namespace asn1::rrc;
class mac_dummy_timers
:public srslte::mac_interface_timers
{
public:
mac_dummy_timers() : timers(8) {}
srslte::timers::timer* timer_get(uint32_t timer_id) {
return timers.get(timer_id);
}
void timer_release_id(uint32_t timer_id) {
timers.release_id(timer_id);
}
uint32_t timer_get_unique_id() {
return timers.get_unique_id();
}
void step_all() {
timers.step_all();
}
private:
srslte::timers timers;
};
class rlc_am_tester
:public pdcp_interface_rlc
,public rrc_interface_rlc
{
public:
rlc_am_tester(rlc_pcap *pcap_ = NULL)
{
n_sdus = 0;
pcap = pcap_;
}
// PDCP interface
void write_pdu(uint32_t lcid, unique_byte_buffer_t sdu)
{
assert(lcid == 1);
sdus[n_sdus++] = std::move(sdu);
}
void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {}
void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {}
void write_pdu_pcch(unique_byte_buffer_t sdu) {}
void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {}
// RRC interface
void max_retx_attempted(){}
std::string get_rb_name(uint32_t lcid) { return std::string(""); }
unique_byte_buffer_t sdus[10];
int n_sdus;
rlc_pcap *pcap;
};
class ul_writer : public thread
{
public:
ul_writer(rlc_am* rlc_) : rlc(rlc_), running(false) {}
~ul_writer() { stop(); }
void stop()
{
running = false;
int cnt=0;
while(running && cnt<100) {
usleep(10000);
cnt++;
}
wait_thread_finish();
}
private:
void run_thread() {
int sn = 0;
running = true;
while(running) {
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t pdu = srslte::allocate_unique_buffer(*pool, "rlc_tester::run_thread", true);
if (!pdu) {
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
// backoff for a bit
usleep(1000);
continue;
}
for (uint32_t i = 0; i < SDU_SIZE; i++) {
pdu->msg[i] = sn;
}
sn++;
pdu->N_bytes = SDU_SIZE;
rlc->write_sdu(std::move(pdu));
}
running = false;
}
rlc_am* rlc;
bool running;
};
bool basic_test()
{
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(14 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
byte_buffer_t pdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
len = rlc1.read_pdu(pdu_bufs[i].msg, 4); // 3 bytes for header + payload
pdu_bufs[i].N_bytes = len;
}
assert(0 == rlc1.get_buffer_state());
// Write 5 PDUs into RLC2
for(int i=0;i<NBUFS;i++)
{
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
assert(2 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 2);
status_buf.N_bytes = len;
assert(0 == rlc2.get_buffer_state());
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
for(int i=0; i<tester.n_sdus; i++)
{
assert(tester.sdus[i]->N_bytes == 1);
assert(*(tester.sdus[i]->msg) == i);
}
// Check statistics
if (rlc1.get_num_tx_bytes() != rlc2.get_num_rx_bytes()) {
return -1;
}
if (rlc2.get_num_tx_bytes() != rlc1.get_num_rx_bytes()) {
return -1;
}
return 0;
}
bool concat_test()
{
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(14 == rlc1.get_buffer_state());
// Read 1 PDUs from RLC1 containing all 5 SDUs
byte_buffer_t pdu_buf;
len = rlc1.read_pdu(pdu_buf.msg, 13); // 8 bytes for header + payload
pdu_buf.N_bytes = len;
assert(0 == rlc1.get_buffer_state());
// Write PDU into RLC2
rlc2.write_pdu(pdu_buf.msg, pdu_buf.N_bytes);
// No status report as we haven't crossed polling thresholds
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
assert(tester.sdus[i]->N_bytes == 1);
assert(*(tester.sdus[i]->msg) == i);
}
// check statistics
if (rlc1.get_num_tx_bytes() != rlc2.get_num_rx_bytes()) {
return -1;
}
if (rlc2.get_num_tx_bytes() != rlc1.get_num_rx_bytes()) {
return -1;
}
return 0;
}
bool segment_test(bool in_seq_rx)
{
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(59 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (force segmentation)
byte_buffer_t pdu_bufs[20];
int n_pdus = 0;
while(rlc1.get_buffer_state() > 0){
len = rlc1.read_pdu(pdu_bufs[n_pdus].msg, 10); // 2 header + payload
pdu_bufs[n_pdus++].N_bytes = len;
}
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2
if (in_seq_rx) {
// deliver PDUs in order
for (int i = 0; i < n_pdus; ++i) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
} else {
// deliver PDUs in reverse order
for (int i = n_pdus - 1; i >= 0; --i) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
}
// Receiver will only generate status PDU if they arrive in order
// If SN=7 arrives first, but the Rx expects SN=0, status reporting will be delayed, see TS 36.322 v10 Section 5.2.3
if (in_seq_rx) {
assert(2 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
assert(0 == rlc2.get_buffer_state());
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
assert(tester.sdus[i]->N_bytes == 10);
for(int j=0;j<10;j++)
assert(tester.sdus[i]->msg[j] == j);
}
if (rlc1.get_num_tx_bytes() != rlc2.get_num_rx_bytes()) {
return -1;
}
if (rlc2.get_num_tx_bytes() != rlc1.get_num_rx_bytes()) {
return -1;
}
return 0;
}
bool retx_test()
{
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(14 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
byte_buffer_t pdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
len = rlc1.read_pdu(pdu_bufs[i].msg, 4); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
}
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 1)
for(int i=0;i<NBUFS;i++)
{
if(i != 1)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
assert(3 == rlc1.get_buffer_state()); // 2 byte header + 1 byte payload
// Read the retx PDU from RLC1
byte_buffer_t retx;
len = rlc1.read_pdu(retx.msg, 3); // 2 byte header + 1 byte payload
retx.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx.msg, retx.N_bytes);
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != 1) return -1;
if (*(tester.sdus[i]->msg) != i) return -1;
}
return 0;
}
bool resegment_test_1()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 10 | 10 | 10 | 10 | 10 |
// Retx PDU segments: | 5 | 5|
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(59 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (10 bytes each)
byte_buffer_t pdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
len = rlc1.read_pdu(pdu_bufs[i].msg, 12); // 12 bytes for header + payload
pdu_bufs[i].N_bytes = len;
}
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 1)
for(int i=0;i<NBUFS;i++)
{
if(i != 1)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
assert(12 == rlc1.get_buffer_state()); // 2 byte header + 10 data
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
len = rlc1.read_pdu(retx1.msg, 9); // 4 byte header + 5 data
retx1.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
assert(9 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
len = rlc1.read_pdu(retx2.msg, 9); // 4 byte header + 5 data
retx2.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != 10) return -1;
for(int j=0;j<10;j++)
if (tester.sdus[i]->msg[j] != j) return -1;
}
return 0;
}
bool resegment_test_2()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 5 | 10 | 20 | 10 | 5 |
// Retx PDU segments: | 10 | 10 |
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(59 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (5 bytes, 10 bytes, 20 bytes, 10 bytes, 5 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 14); // 4 byte header + 10 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 25); // 5 byte header + 20 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 14); // 4 byte header + 10 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for(int i=0;i<NBUFS;i++)
{
if(i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
assert(25 == rlc1.get_buffer_state()); // 4 byte header + 20 data
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 16); // 6 byte header + 10 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
assert(18 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 18); // 6 byte header + 12 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != 10) return -1;
for(int j=0;j<10;j++)
if (tester.sdus[i]->msg[j] != j) return -1;
}
return 0;
}
bool resegment_test_3()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 5 | 5| 20 | 10 | 10 |
// Retx PDU segments: | 10 | 10 |
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(59 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 20 bytes, 10 bytes, 10 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 24); // 4 byte header + 20 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 12); // 2 byte header + 10 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 12); // 2 byte header + 10 byte payload
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for(int i=0;i<NBUFS;i++)
{
if(i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 16); // 6 byte header + 10 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 16); // 6 byte header + 10 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != 10) return -1;
for(int j=0;j<10;j++)
if (tester.sdus[i]->msg[j] != j) return -1;
}
return 0;
}
bool resegment_test_4()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 5 | 5| 30 | 5 | 5|
// Retx PDU segments: | 15 | 15 |
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(59 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 30 bytes, 5 bytes, 5 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 35); // 5 byte header + 30 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for(int i=0;i<NBUFS;i++)
{
if(i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 21); // 6 byte header + 15 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
assert(23 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 23); // 6 byte header + 18 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != 10) return -1;
for(int j=0;j<10;j++)
if (tester.sdus[i]->msg[j] != j) return -1;
}
return 0;
}
bool resegment_test_5()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: |2|3| 40 |3|2|
// Retx PDU segments: | 20 | 20 |
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 5 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[NBUFS];
for(int i=0;i<NBUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(59 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (2 bytes, 3 bytes, 40 bytes, 3 bytes, 2 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 4); // 2 byte header + 2 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 5); // 2 byte header + 3 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 48); // 8 byte header + 40 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 5); // 2 byte header + 3 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 4); // 2 byte header + 2 byte payload
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for(int i=0;i<NBUFS;i++)
{
if(i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 27); // 7 byte header + 20 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
assert(31 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 34); // 7 byte header + 24 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
assert(tester.n_sdus == 5);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != 10) return -1;
for(int j=0;j<10;j++)
if (tester.sdus[i]->msg[j] != j) return -1;
}
return 0;
}
bool resegment_test_6()
{
// SDUs: |10|10|10| 54 | 54 | 54 | 54 | 54 | 54 |
// PDUs: |10|10|10| 270 | 54 |
// Retx PDU segments: | 120 | 150 |
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[9];
for(int i=0;i<3;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<10;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
for(int i=3;i<9;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(int j=0;j<54;j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 54;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(369 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (10, 10, 10, 270, 54)
byte_buffer_t pdu_bufs[5];
for(int i=0;i<3;i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 12);
pdu_bufs[i].N_bytes = len;
}
len = rlc1.read_pdu(pdu_bufs[3].msg, 278);
pdu_bufs[3].N_bytes = len;
len = rlc1.read_pdu(pdu_bufs[4].msg, 56);
pdu_bufs[4].N_bytes = len;
assert(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 3)
for(int i=0;i<5;i++)
{
if(i != 3)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
assert(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
assert(278 == rlc1.get_buffer_state());
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
len = rlc1.read_pdu(retx1.msg, 129);
retx1.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
assert(159 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
len = rlc1.read_pdu(retx2.msg, 162);
retx2.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
assert(tester.n_sdus == 9);
for(int i=0;i<3;i++)
{
assert(tester.sdus[i]->N_bytes == 10);
for(int j=0;j<10;j++)
assert(tester.sdus[i]->msg[j] == j);
}
for(int i=3;i<9;i++)
{
if (i >= tester.n_sdus) return -1;
if(tester.sdus[i]->N_bytes != 54) return -1;
for(int j=0;j<54;j++) {
if (tester.sdus[i]->msg[j] != j) return -1;
}
}
return 0;
}
// Retransmission of PDU segments of the same size
bool resegment_test_7()
{
// SDUs: | 30 | 30 |
// PDUs: | 13 | 13 | 11 | 13 | 10 |
// Rxed PDUs | 13 | 13 | | 13 | 10 |
// Retx PDU segments: | 4 | 7 |
// Retx PDU segments: |3|3]3|2|
const uint32_t N_SDU_BUFS = 2;
const uint32_t N_PDU_BUFS = 5;
const uint32_t sdu_size = 30;
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(100);
log2.set_hex_limit(100);
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_test7.pcap", 0);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 2 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[N_SDU_BUFS];
for(uint32_t i=0;i<N_SDU_BUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(uint32_t j=0;j<sdu_size;j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(65 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (15 bytes each)
byte_buffer_t pdu_bufs[N_PDU_BUFS];
for(uint32_t i=0;i<N_PDU_BUFS;i++)
{
pdu_bufs[i].N_bytes = rlc1.read_pdu(pdu_bufs[i].msg, 15); // 2 bytes for header + 12 B payload
assert(pdu_bufs[i].N_bytes);
}
// Step timers until poll_retx timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// RLC should try to retx a random PDU because it needs to request a status from the receiver
assert(0 != rlc1.get_buffer_state());
// Skip PDU with SN 2
for(uint32_t i=0;i<N_PDU_BUFS;i++) {
if (i!=2) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_am_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
cnt = 5;
while (cnt--) {
timers.step_all();
}
// RLC should try to retransmit a random PDU because it needs to re-request a status PDU from the receiver
assert(0 != rlc1.get_buffer_state());
// first round of retx, forcing resegmentation
byte_buffer_t retx[4];
for (uint32_t i = 0; i < 4; i++) {
assert(0 != rlc1.get_buffer_state());
retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 7);
assert(retx[i].N_bytes);
// Write the last two segments to RLC2
if (i > 1) {
rlc2.write_pdu(retx[i].msg, retx[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
}
// Read status PDU from RLC2
assert(rlc2.get_buffer_state());
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
#endif
assert(15 == rlc1.get_buffer_state());
// second round of retx, forcing resegmentation
byte_buffer_t retx2[4];
for (uint32_t i = 0; i < 4; i++) {
assert(rlc1.get_buffer_state() != 0);
retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9);
assert(retx2[i].N_bytes != 0);
rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
// check buffer states
assert(0 == rlc1.get_buffer_state());
// Step timers until poll_retx timeout expires
cnt = 5;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
assert(rlc2.get_buffer_state());
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// check status again
assert(0 == rlc1.get_buffer_state());
assert(0 == rlc2.get_buffer_state());
// Check number of SDUs and their content
assert(tester.n_sdus == N_SDU_BUFS);
for(int i=0; i<tester.n_sdus; i++)
{
if (tester.sdus[i]->N_bytes != sdu_size) return -1;
for(uint32_t j=0;j<N_SDU_BUFS;j++) {
if (tester.sdus[i]->msg[j] != i) return -1;
}
}
#if HAVE_PCAP
pcap.close();
#endif
return 0;
}
// Retransmission of PDU segments with different size
bool resegment_test_8()
{
// SDUs: | 30 | 30 |
// PDUs: | 15 | 15 | 15 | 15 | 15 |
// Rxed PDUs | 15 | | 15 | 15 |
// Retx PDU segments: | 7 | 7 | 7 | 7 |
// Retx PDU segments: | 6 | 6 ] 6 | 6 | 6 | 6 | 6 | 6 |
const uint32_t N_SDU_BUFS = 2;
const uint32_t N_PDU_BUFS = 5;
const uint32_t sdu_size = 30;
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(100);
log2.set_hex_limit(100);
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_test8.pcap", 0);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
mac_dummy_timers timers;
rlc_am rlc1;
rlc_am rlc2;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc2.init(&log2, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
if (not rlc2.configure(&cnfg)) {
return -1;
}
// Push 2 SDUs into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_bufs[N_SDU_BUFS];
for(uint32_t i=0;i<N_SDU_BUFS;i++)
{
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
for(uint32_t j=0;j<sdu_size;j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
assert(65 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (15 bytes each)
byte_buffer_t pdu_bufs[N_PDU_BUFS];
for(uint32_t i=0;i<N_PDU_BUFS;i++)
{
pdu_bufs[i].N_bytes = rlc1.read_pdu(pdu_bufs[i].msg, 15); // 12 bytes for header + payload
assert(pdu_bufs[i].N_bytes);
}
assert(0 == rlc1.get_buffer_state());
// Skip PDU one and two
for(uint32_t i=0;i<N_PDU_BUFS;i++) {
if (i < 1 || i > 2) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_am_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// what PDU to retransmit is random but it must not be zero
assert(0 != rlc1.get_buffer_state());
// first round of retx, forcing resegmentation
byte_buffer_t retx[4];
for (uint32_t i = 0; i < 3; i++) {
assert(rlc1.get_buffer_state());
retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 8);
assert(retx[i].N_bytes);
// Write the last two segments to RLC2
if (i > 1) {
rlc2.write_pdu(retx[i].msg, retx[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
cnt = 7;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
assert(rlc2.get_buffer_state());
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
#endif
assert(15 == rlc1.get_buffer_state());
// second round of retx, reduce grant size to force different segment sizes
byte_buffer_t retx2[20];
for (uint32_t i = 0; i < 7; i++) {
assert(rlc1.get_buffer_state() != 0);
retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9);
assert(retx2[i].N_bytes != 0);
rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
// get BSR from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// check buffer states
if (rlc1.get_buffer_state() != 0) {
return -1;
};
if (rlc2.get_buffer_state() != 0) {
return -1;
};
// Check number of SDUs and their content
assert(tester.n_sdus == N_SDU_BUFS);
for(int i=0; i<tester.n_sdus; i++) {
if (tester.sdus[i]->N_bytes != sdu_size) return -1;
for(uint32_t j=0;j<N_SDU_BUFS;j++) {
if (tester.sdus[i]->msg[j] != i) return -1;
}
}
#if HAVE_PCAP
pcap.close();
#endif
return 0;
}
bool reset_test()
{
srslte::log_filter log1("RLC_AM_1");
srslte::log_filter log2("RLC_AM_2");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log2.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
log2.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
int len;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
// Push 1 SDU of size 10 into RLC1
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
unique_byte_buffer_t sdu_buf = srslte::allocate_unique_buffer(*pool, true);
sdu_buf->msg[0] = 1; // Write the index into the buffer
sdu_buf->N_bytes = 100;
rlc1.write_sdu(std::move(sdu_buf));
// read 1 PDU from RLC1 and force segmentation
byte_buffer_t pdu_bufs;
len = rlc1.read_pdu(pdu_bufs.msg, 4);
pdu_bufs.N_bytes = len;
// reset RLC1
rlc1.stop();
// read another PDU segment from RLC1
len = rlc1.read_pdu(pdu_bufs.msg, 4);
pdu_bufs.N_bytes = len;
// now empty RLC buffer
len = rlc1.read_pdu(pdu_bufs.msg, 100);
pdu_bufs.N_bytes = len;
if (0 != rlc1.get_buffer_state()) {
return -1;
}
return 0;
}
bool stop_test()
{
srslte::log_filter log1("RLC_AM_1");
log1.set_level(srslte::LOG_LEVEL_DEBUG);
log1.set_hex_limit(-1);
rlc_am_tester tester;
mac_dummy_timers timers;
rlc_am rlc1;
log1.set_level(srslte::LOG_LEVEL_DEBUG);
rlc1.init(&log1, 1, &tester, &tester, &timers);
rlc_cfg_c cnfg;
cnfg.set(rlc_cfg_c::types::am);
cnfg.am().dl_am_rlc.t_reordering = t_reordering_e::ms5;
cnfg.am().dl_am_rlc.t_status_prohibit = t_status_prohibit_e::ms5;
cnfg.am().ul_am_rlc.max_retx_thres = ul_am_rlc_s::max_retx_thres_e_::t4;
cnfg.am().ul_am_rlc.poll_byte = poll_byte_e::kb25;
cnfg.am().ul_am_rlc.poll_pdu = poll_pdu_e::p4;
cnfg.am().ul_am_rlc.t_poll_retx = t_poll_retx_e::ms5;
if (not rlc1.configure(&cnfg)) {
return -1;
}
// start thread reading
ul_writer writer(&rlc1);
writer.start(-2);
// let writer thread block on tx_queue
usleep(1e6);
// stop RLC1
rlc1.stop();
return 0;
}
int main(int argc, char **argv)
{
if (basic_test()) {
printf("basic_test failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (concat_test()) {
printf("concat_test failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (segment_test(true)) {
printf("segment_test with in-order PDU reception failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (segment_test(false)) {
printf("segment_test with out-of-order PDU reception failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (retx_test()) {
printf("retx_test failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_1()) {
printf("resegment_test_1 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_2()) {
printf("resegment_test_2 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_3()) {
printf("resegment_test_3 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_4()) {
printf("resegment_test_4 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_5()) {
printf("resegment_test_5 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_6()) {
printf("resegment_test_6 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_7()) {
printf("resegment_test_7 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (resegment_test_8()) {
printf("resegment_test_8 failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (reset_test()) {
printf("reset_test failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
if (stop_test()) {
printf("stop_test failed\n");
exit(-1);
};
byte_buffer_pool::get_instance()->cleanup();
}