You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

402 lines
14 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
/******************************************************************************
* File: timers.h
* Description: Manually incremented timers. Call a callback function upon
* expiry.
* Reference:
*****************************************************************************/
#ifndef SRSRAN_TIMERS_H
#define SRSRAN_TIMERS_H
#include "srsran/adt/intrusive_list.h"
#include "srsran/adt/move_callback.h"
#include <algorithm>
#include <cstdint>
#include <deque>
#include <inttypes.h>
#include <limits>
#include <mutex>
namespace srsran {
class timer_callback
{
public:
virtual void timer_expired(uint32_t timer_id) = 0;
};
/**
* Class that manages stack timers. It allows creation of unique_timers with different ids. Each unique_timer duration,
* and callback can be set via the set(...) method. A timer can be started/stopped via run()/stop() methods.
* The timers access/alteration is thread-safe. Just beware non-atomic uses of its getters.
* Internal Data structures:
* - timer_list - std::deque that stores timer objects via push_back() to keep pointer/reference validity.
* The timer index in the timer_list matches the timer object id field.
* This deque will only grow in size. Erased timers are just tagged in the deque as empty, and can be reused for the
* creation of new timers. To avoid unnecessary runtime allocations, the user can set an initial capacity.
* - free_list - intrusive forward linked list to keep track of the empty timers and speed up new timer creation.
* - A large circular vector of size WHEEL_SIZE which works as a time wheel, storing and circularly indexing the
* currently running timers by their respective timeout value.
* For a number of running timers N, and uniform distribution of timeout values, the step_all() complexity
* should be O(N/WHEEL_SIZE). Thus, the performance should improve with a larger WHEEL_SIZE, at the expense of more
* used memory.
*/
class timer_handler
{
using tic_diff_t = uint32_t;
using tic_t = uint32_t;
constexpr static uint32_t INVALID_ID = std::numeric_limits<uint32_t>::max();
constexpr static size_t WHEEL_SHIFT = 16U;
constexpr static size_t WHEEL_SIZE = 1U << WHEEL_SHIFT;
constexpr static size_t WHEEL_MASK = WHEEL_SIZE - 1U;
constexpr static uint64_t STOPPED_FLAG = 0U;
constexpr static uint64_t RUNNING_FLAG = static_cast<uint64_t>(1U) << 63U;
constexpr static uint64_t EXPIRED_FLAG = static_cast<uint64_t>(1U) << 62U;
constexpr static tic_diff_t MAX_TIMER_DURATION = 0x3FFFFFFFU;
static bool decode_is_running(uint64_t value) { return (value & RUNNING_FLAG) != 0; }
static bool decode_is_expired(uint64_t value) { return (value & EXPIRED_FLAG) != 0; }
static tic_diff_t decode_duration(uint64_t value) { return (value >> 32U) & MAX_TIMER_DURATION; }
static tic_t decode_timeout(uint64_t value) { return static_cast<uint32_t>(value & 0xFFFFFFFFU); }
static uint64_t encode_state(uint64_t mode_flag, uint32_t duration, uint32_t timeout)
{
return mode_flag + (static_cast<uint64_t>(duration) << 32U) + timeout;
}
struct timer_impl : public intrusive_double_linked_list_element<>, public intrusive_forward_list_element<> {
// const
const uint32_t id;
timer_handler& parent;
// writes protected by backend lock
bool allocated = false;
std::atomic<uint64_t> state{0}; ///< read can be without lock, thus writes must be atomic
srsran::move_callback<void(uint32_t)> callback;
explicit timer_impl(timer_handler& parent_, uint32_t id_) : parent(parent_), id(id_) {}
timer_impl(const timer_impl&) = delete;
timer_impl(timer_impl&&) = delete;
timer_impl& operator=(const timer_impl&) = delete;
timer_impl& operator=(timer_impl&&) = delete;
// unprotected
bool is_running_() const { return decode_is_running(state.load(std::memory_order_relaxed)); }
bool is_expired_() const { return decode_is_expired(state.load(std::memory_order_relaxed)); }
uint32_t duration_() const { return decode_duration(state.load(std::memory_order_relaxed)); }
bool is_set_() const { return duration_() > 0; }
tic_diff_t time_elapsed_() const
{
uint64_t state_snapshot = state.load(std::memory_order_relaxed);
bool running = decode_is_running(state_snapshot), expired = decode_is_expired(state_snapshot);
uint32_t duration = decode_duration(state_snapshot), timeout = decode_timeout(state_snapshot);
return running ? duration - (timeout - parent.cur_time) : (expired ? duration : 0);
}
void set(uint32_t duration_)
{
srsran_assert(duration_ <= MAX_TIMER_DURATION,
"Invalid timer duration=%" PRIu32 ">%" PRIu32,
duration_,
MAX_TIMER_DURATION);
std::lock_guard<std::mutex> lock(parent.mutex);
set_(duration_);
}
void set(uint32_t duration_, srsran::move_callback<void(uint32_t)> callback_)
{
srsran_assert(duration_ <= MAX_TIMER_DURATION,
"Invalid timer duration=%" PRIu32 ">%" PRIu32,
duration_,
MAX_TIMER_DURATION);
std::lock_guard<std::mutex> lock(parent.mutex);
set_(duration_);
callback = std::move(callback_);
}
void run()
{
std::lock_guard<std::mutex> lock(parent.mutex);
parent.start_run_(*this);
}
void stop()
{
std::lock_guard<std::mutex> lock(parent.mutex);
// does not call callback
parent.stop_timer_(*this, false);
}
void deallocate()
{
std::lock_guard<std::mutex> lock(parent.mutex);
parent.dealloc_timer_(*this);
}
private:
void set_(uint32_t duration_)
{
duration_ = std::max(duration_, 1U); // the next step will be one place ahead of current one
// called in locked context
uint64_t old_state = state.load(std::memory_order_relaxed);
if (decode_is_running(old_state)) {
// if already running, just extends timer lifetime
parent.start_run_(*this, duration_);
} else {
state.store(encode_state(STOPPED_FLAG, duration_, 0), std::memory_order_relaxed);
}
}
};
public:
class unique_timer
{
public:
unique_timer() = default;
explicit unique_timer(timer_impl* handle_) : handle(handle_) {}
unique_timer(const unique_timer&) = delete;
unique_timer(unique_timer&& other) noexcept : handle(other.handle) { other.handle = nullptr; }
~unique_timer() { release(); }
unique_timer& operator=(const unique_timer&) = delete;
unique_timer& operator =(unique_timer&& other) noexcept
{
if (this != &other) {
handle = other.handle;
other.handle = nullptr;
}
return *this;
}
bool is_valid() const { return handle != nullptr; }
void set(uint32_t duration_, move_callback<void(uint32_t)> callback_)
{
srsran_assert(is_valid(), "Trying to setup empty timer handle");
handle->set(duration_, std::move(callback_));
}
void set(uint32_t duration_)
{
srsran_assert(is_valid(), "Trying to setup empty timer handle");
handle->set(duration_);
}
uint32_t id() const { return is_valid() ? handle->id : INVALID_ID; }
bool is_set() const { return is_valid() and handle->is_set_(); }
bool is_running() const { return is_valid() and handle->is_running_(); }
bool is_expired() const { return is_valid() and handle->is_expired_(); }
tic_diff_t time_elapsed() const { return is_valid() ? handle->time_elapsed_() : 0; }
tic_diff_t duration() const { return is_valid() ? handle->duration_() : 0; }
void run()
{
srsran_assert(is_valid(), "Starting invalid timer");
handle->run();
}
void stop()
{
if (is_valid()) {
handle->stop();
}
}
void release()
{
if (is_valid()) {
handle->deallocate();
handle = nullptr;
}
}
private:
timer_impl* handle = nullptr;
};
explicit timer_handler(uint32_t capacity = 64)
{
time_wheel.resize(WHEEL_SIZE);
// Pre-reserve timers
while (timer_list.size() < capacity) {
timer_list.emplace_back(*this, timer_list.size());
}
// push to free list in reverse order to keep ascending ids
for (auto it = timer_list.rbegin(); it != timer_list.rend(); ++it) {
free_list.push_front(&(*it));
}
nof_free_timers = timer_list.size();
}
void step_all()
{
std::unique_lock<std::mutex> lock(mutex);
uint32_t cur_time_local = cur_time.load(std::memory_order_relaxed) + 1;
auto& wheel_list = time_wheel[cur_time_local & WHEEL_MASK];
for (auto it = wheel_list.begin(); it != wheel_list.end();) {
timer_impl& timer = timer_list[it->id];
++it;
if (decode_timeout(timer.state.load(std::memory_order_relaxed)) == cur_time_local) {
// stop timer (callback has to see the timer has already expired)
stop_timer_(timer, true);
// Call callback if configured
if (not timer.callback.is_empty()) {
// unlock mutex. It can happen that the callback tries to run a timer too
lock.unlock();
timer.callback(timer.id);
// Lock again to keep protecting the wheel
lock.lock();
}
}
}
cur_time.fetch_add(1, std::memory_order_relaxed);
}
void stop_all()
{
std::lock_guard<std::mutex> lock(mutex);
// does not call callback
for (timer_impl& timer : timer_list) {
stop_timer_(timer, false);
}
}
unique_timer get_unique_timer() { return unique_timer(&alloc_timer()); }
uint32_t nof_timers() const
{
std::lock_guard<std::mutex> lock(mutex);
return timer_list.size() - nof_free_timers;
}
uint32_t nof_running_timers() const
{
std::lock_guard<std::mutex> lock(mutex);
return nof_timers_running_;
}
constexpr static uint32_t max_timer_duration() { return MAX_TIMER_DURATION; }
template <typename F>
void defer_callback(uint32_t duration, const F& func)
{
timer_impl& timer = alloc_timer();
srsran::move_callback<void(uint32_t)> c = [func, &timer](uint32_t tid) {
func();
// auto-deletes timer
timer.deallocate();
};
timer.set(duration, std::move(c));
timer.run();
}
// useful for testing
static size_t get_wheel_size() { return WHEEL_SIZE; }
private:
timer_impl& alloc_timer()
{
std::lock_guard<std::mutex> lock(mutex);
timer_impl* t;
if (not free_list.empty()) {
t = &free_list.front();
srsran_assert(not t->allocated, "Invalid timer id=%d state", t->id);
free_list.pop_front();
nof_free_timers--;
} else {
// Need to increase deque
timer_list.emplace_back(*this, timer_list.size());
t = &timer_list.back();
}
t->allocated = true;
return *t;
}
void dealloc_timer_(timer_impl& timer)
{
if (not timer.allocated) {
// already deallocated
return;
}
stop_timer_(timer, false);
timer.allocated = false;
timer.state.store(encode_state(STOPPED_FLAG, 0, 0), std::memory_order_relaxed);
timer.callback = srsran::move_callback<void(uint32_t)>();
free_list.push_front(&timer);
nof_free_timers++;
// leave id unchanged.
}
void start_run_(timer_impl& timer, uint32_t duration_ = 0)
{
uint64_t timer_old_state = timer.state.load(std::memory_order_relaxed);
duration_ = duration_ == 0 ? decode_duration(timer_old_state) : duration_;
uint32_t new_timeout = cur_time.load(std::memory_order_relaxed) + duration_;
size_t new_wheel_pos = new_timeout & WHEEL_MASK;
uint32_t old_timeout = decode_timeout(timer_old_state);
bool was_running = decode_is_running(timer_old_state);
if (was_running and (old_timeout & WHEEL_MASK) == new_wheel_pos) {
// If no change in timer wheel position. Just update absolute timeout
timer.state.store(encode_state(RUNNING_FLAG, duration_, new_timeout), std::memory_order_relaxed);
return;
}
// Stop timer if it was running, removing it from wheel in the process
if (was_running) {
time_wheel[old_timeout & WHEEL_MASK].pop(&timer);
nof_timers_running_--;
}
// Insert timer in wheel
time_wheel[new_wheel_pos].push_front(&timer);
timer.state.store(encode_state(RUNNING_FLAG, duration_, new_timeout), std::memory_order_relaxed);
nof_timers_running_++;
}
/// called when user manually stops timer (as an alternative to expiry)
void stop_timer_(timer_impl& timer, bool expiry)
{
uint64_t timer_old_state = timer.state.load(std::memory_order_relaxed);
if (not decode_is_running(timer_old_state)) {
return;
}
// If already running, need to disconnect it from previous wheel
uint32_t old_timeout = decode_timeout(timer_old_state);
time_wheel[old_timeout & WHEEL_MASK].pop(&timer);
uint64_t new_state =
encode_state(expiry ? EXPIRED_FLAG : STOPPED_FLAG, decode_duration(timer_old_state), old_timeout);
timer.state.store(new_state, std::memory_order_relaxed);
nof_timers_running_--;
}
std::atomic<tic_t> cur_time{0};
size_t nof_timers_running_ = 0, nof_free_timers = 0;
// using a deque to maintain reference validity on emplace_back. Also, this deque will only grow.
std::deque<timer_impl> timer_list;
srsran::intrusive_forward_list<timer_impl> free_list;
std::vector<srsran::intrusive_double_linked_list<timer_impl> > time_wheel;
mutable std::mutex mutex; // Protect priority queue
};
using unique_timer = timer_handler::unique_timer;
} // namespace srsran
#endif // SRSRAN_TIMERS_H