You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

698 lines
20 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <uhd.h>
#include <sys/time.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include "srslte/srslte.h"
#include "rf_uhd_imp.h"
#include "srslte/rf/rf.h"
#include "uhd_c_api.h"
typedef struct {
char *devname;
uhd_usrp_handle usrp;
uhd_rx_streamer_handle rx_stream;
uhd_tx_streamer_handle tx_stream;
uhd_rx_metadata_handle rx_md, rx_md_first;
uhd_tx_metadata_handle tx_md;
uhd_meta_range_handle rx_gain_range;
size_t rx_nof_samples;
size_t tx_nof_samples;
double tx_rate;
bool dynamic_rate;
bool has_rssi;
uhd_sensor_value_handle rssi_value;
uint32_t nof_rx_channels;
int nof_tx_channels;
srslte_rf_error_handler_t uhd_error_handler;
bool async_thread_running;
pthread_t async_thread;
} rf_uhd_handler_t;
void suppress_handler(const char *x)
{
// do nothing
}
cf_t zero_mem[64*1024];
static void log_overflow(rf_uhd_handler_t *h) {
if (h->uhd_error_handler) {
srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t));
error.type = SRSLTE_RF_ERROR_OVERFLOW;
h->uhd_error_handler(error);
}
}
static void log_late(rf_uhd_handler_t *h) {
if (h->uhd_error_handler) {
srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t));
error.type = SRSLTE_RF_ERROR_LATE;
h->uhd_error_handler(error);
}
}
static void log_underflow(rf_uhd_handler_t *h) {
if (h->uhd_error_handler) {
srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t));
error.type = SRSLTE_RF_ERROR_UNDERFLOW;
h->uhd_error_handler(error);
}
}
static void* async_thread(void *h) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_async_metadata_handle md;
uhd_async_metadata_make(&md);
while(handler->async_thread_running) {
bool valid;
uhd_error err = uhd_tx_streamer_recv_async_msg(handler->tx_stream, &md, 0.5, &valid);
if (err == UHD_ERROR_NONE) {
if (valid) {
uhd_async_metadata_event_code_t event_code;
uhd_async_metadata_event_code(md, &event_code);
if (event_code == UHD_ASYNC_METADATA_EVENT_CODE_UNDERFLOW ||
event_code == UHD_ASYNC_METADATA_EVENT_CODE_UNDERFLOW_IN_PACKET) {
log_underflow(handler);
} else if (event_code == UHD_ASYNC_METADATA_EVENT_CODE_TIME_ERROR) {
log_late(handler);
}
}
} else {
fprintf(stderr, "Error while receiving aync metadata: 0x%x\n", err);
return NULL;
}
}
return NULL;
}
void rf_uhd_suppress_stdout(void *h) {
rf_uhd_register_msg_handler_c(suppress_handler);
}
void rf_uhd_register_error_handler(void *h, srslte_rf_error_handler_t new_handler)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
handler->uhd_error_handler = new_handler;
}
static bool find_string(uhd_string_vector_handle h, char *str)
{
char buff[128];
size_t n;
uhd_string_vector_size(h, &n);
for (int i=0;i<n;i++) {
uhd_string_vector_at(h, i, buff, 128);
if (strstr(buff, str)) {
return true;
}
}
return false;
}
static bool isLocked(rf_uhd_handler_t *handler, char *sensor_name, bool is_rx, uhd_sensor_value_handle *value_h)
{
bool val_out = false;
if (sensor_name) {
if (is_rx) {
uhd_usrp_get_rx_sensor(handler->usrp, sensor_name, 0, value_h);
} else {
uhd_usrp_get_mboard_sensor(handler->usrp, sensor_name, 0, value_h);
}
uhd_sensor_value_to_bool(*value_h, &val_out);
} else {
usleep(500);
val_out = true;
}
return val_out;
}
char* rf_uhd_devname(void* h)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
return handler->devname;
}
bool rf_uhd_rx_wait_lo_locked(void *h)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_string_vector_handle mb_sensors;
uhd_string_vector_handle rx_sensors;
char *sensor_name;
uhd_sensor_value_handle value_h;
uhd_string_vector_make(&mb_sensors);
uhd_string_vector_make(&rx_sensors);
uhd_sensor_value_make_from_bool(&value_h, "", true, "True", "False");
uhd_usrp_get_mboard_sensor_names(handler->usrp, 0, &mb_sensors);
uhd_usrp_get_rx_sensor_names(handler->usrp, 0, &rx_sensors);
/*if (find_string(rx_sensors, "lo_locked")) {
sensor_name = "lo_locked";
} else */if (find_string(mb_sensors, "ref_locked")) {
sensor_name = "ref_locked";
} else {
sensor_name = NULL;
}
double report = 0.0;
while (!isLocked(handler, sensor_name, false, &value_h) && report < 30.0) {
report += 0.1;
usleep(1000);
}
bool val = isLocked(handler, sensor_name, false, &value_h);
uhd_string_vector_free(&mb_sensors);
uhd_string_vector_free(&rx_sensors);
uhd_sensor_value_free(&value_h);
return val;
}
void rf_uhd_set_tx_cal(void *h, srslte_rf_cal_t *cal)
{
}
void rf_uhd_set_rx_cal(void *h, srslte_rf_cal_t *cal)
{
}
int rf_uhd_start_rx_stream(void *h)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_stream_cmd_t stream_cmd = {
.stream_mode = UHD_STREAM_MODE_START_CONTINUOUS,
.stream_now = false
};
uhd_usrp_get_time_now(handler->usrp, 0, &stream_cmd.time_spec_full_secs, &stream_cmd.time_spec_frac_secs);
stream_cmd.time_spec_frac_secs += 0.5;
if (stream_cmd.time_spec_frac_secs > 1) {
stream_cmd.time_spec_frac_secs -= 1;
stream_cmd.time_spec_full_secs += 1;
}
uhd_rx_streamer_issue_stream_cmd(handler->rx_stream, &stream_cmd);
return 0;
}
int rf_uhd_stop_rx_stream(void *h)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_stream_cmd_t stream_cmd = {
.stream_mode = UHD_STREAM_MODE_STOP_CONTINUOUS,
.stream_now = true
};
uhd_rx_streamer_issue_stream_cmd(handler->rx_stream, &stream_cmd);
return 0;
}
void rf_uhd_flush_buffer(void *h)
{
int n;
cf_t tmp1[1024];
cf_t tmp2[1024];
void *data[2] = {tmp1, tmp2};
do {
n = rf_uhd_recv_with_time_multi(h, data, 1024, 0, NULL, NULL);
} while (n > 0);
}
bool rf_uhd_has_rssi(void *h) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
return handler->has_rssi;
}
bool get_has_rssi(void *h) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_string_vector_handle rx_sensors;
uhd_string_vector_make(&rx_sensors);
uhd_usrp_get_rx_sensor_names(handler->usrp, 0, &rx_sensors);
bool ret = find_string(rx_sensors, "rssi");
uhd_string_vector_free(&rx_sensors);
return ret;
}
float rf_uhd_get_rssi(void *h) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
if (handler->has_rssi) {
double val_out;
uhd_usrp_get_rx_sensor(handler->usrp, "rssi", 0, &handler->rssi_value);
uhd_sensor_value_to_realnum(handler->rssi_value, &val_out);
return val_out;
} else {
return 0.0;
}
}
int rf_uhd_open(char *args, void **h)
{
return rf_uhd_open_multi(args, h, 1);
}
int rf_uhd_open_multi(char *args, void **h, uint32_t nof_rx_antennas)
{
if (h) {
*h = NULL;
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) malloc(sizeof(rf_uhd_handler_t));
if (!handler) {
perror("malloc");
return -1;
}
*h = handler;
/* Set priority to UHD threads */
uhd_set_thread_priority(uhd_default_thread_priority, true);
/* Find available devices */
uhd_string_vector_handle devices_str;
uhd_string_vector_make(&devices_str);
uhd_usrp_find("", &devices_str);
char args2[512];
handler->dynamic_rate = true;
// Allow NULL parameter
if (args == NULL) {
args = "";
}
handler->devname = NULL;
bzero(zero_mem, sizeof(cf_t)*64*1024);
/* If device type or name not given in args, choose a B200 */
if (args[0]=='\0') {
if (find_string(devices_str, "type=b200") && !strstr(args, "recv_frame_size")) {
// If B200 is available, use it
args = "type=b200";
handler->devname = DEVNAME_B200;
} else if (find_string(devices_str, "type=x300")) {
// Else if X300 is available, set master clock rate now (can't be changed later)
args = "type=x300,master_clock_rate=184.32e6";
handler->dynamic_rate = false;
handler->devname = DEVNAME_X300;
}
} else {
// If args is set and x300 type is specified, make sure master_clock_rate is defined
if (strstr(args, "type=x300") && !strstr(args, "master_clock_rate")) {
sprintf(args2, "%s,master_clock_rate=184.32e6",args);
args = args2;
handler->dynamic_rate = false;
handler->devname = DEVNAME_X300;
} else if (strstr(args, "type=b200")) {
handler->devname = DEVNAME_B200;
}
}
uhd_string_vector_free(&devices_str);
/* Create UHD handler */
if (strstr(args, "silent")) {
rf_uhd_suppress_stdout(NULL);
} else {
printf("Opening USRP with args: %s\n", args);
}
uhd_error error = uhd_usrp_make(&handler->usrp, args);
if (error) {
fprintf(stderr, "Error opening UHD: code %d\n", error);
return -1;
}
if (!handler->devname) {
char dev_str[1024];
uhd_usrp_get_mboard_name(handler->usrp, 0, dev_str, 1024);
if (strstr(dev_str, "B2") || strstr(dev_str, "B2")) {
handler->devname = DEVNAME_B200;
} else if (strstr(dev_str, "X3") || strstr(dev_str, "X3")) {
handler->devname = DEVNAME_X300;
}
}
if (!handler->devname) {
handler->devname = "uhd_unknown";
}
// Set external clock reference
if (strstr(args, "clock=external")) {
uhd_usrp_set_clock_source(handler->usrp, "external", 0);
} else if (strstr(args, "clock=gpsdo")) {
printf("Using GPSDO clock\n");
uhd_usrp_set_clock_source(handler->usrp, "gpsdo", 0);
}
handler->has_rssi = get_has_rssi(handler);
if (handler->has_rssi) {
uhd_sensor_value_make_from_realnum(&handler->rssi_value, "rssi", 0, "dBm", "%f");
}
size_t channel[4] = {0, 1, 2, 3};
uhd_stream_args_t stream_args = {
.cpu_format = "fc32",
.otw_format = "sc16",
.args = "",
.channel_list = channel,
.n_channels = 1
};
handler->nof_rx_channels = nof_rx_antennas;
handler->nof_tx_channels = 1;
/* Initialize rx and tx stremers */
uhd_rx_streamer_make(&handler->rx_stream);
error = uhd_usrp_get_rx_stream(handler->usrp, &stream_args, handler->rx_stream);
if (error) {
fprintf(stderr, "Error opening RX stream: %d\n", error);
return -1;
}
uhd_tx_streamer_make(&handler->tx_stream);
error = uhd_usrp_get_tx_stream(handler->usrp, &stream_args, handler->tx_stream);
if (error) {
fprintf(stderr, "Error opening TX stream: %d\n", error);
return -1;
}
uhd_rx_streamer_max_num_samps(handler->rx_stream, &handler->rx_nof_samples);
uhd_tx_streamer_max_num_samps(handler->tx_stream, &handler->tx_nof_samples);
uhd_meta_range_make(&handler->rx_gain_range);
uhd_usrp_get_rx_gain_range(handler->usrp, "", 0, handler->rx_gain_range);
// Make metadata objects for RX/TX
uhd_rx_metadata_make(&handler->rx_md);
uhd_rx_metadata_make(&handler->rx_md_first);
uhd_tx_metadata_make(&handler->tx_md, false, 0, 0, false, false);
// Start low priority thread to receive async commands
handler->async_thread_running = true;
if (pthread_create(&handler->async_thread, NULL, async_thread, handler)) {
perror("pthread_create");
return -1;
}
return 0;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int rf_uhd_close(void *h)
{
rf_uhd_stop_rx_stream(h);
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_tx_metadata_free(&handler->tx_md);
uhd_rx_metadata_free(&handler->rx_md_first);
uhd_rx_metadata_free(&handler->rx_md);
uhd_meta_range_free(&handler->rx_gain_range);
uhd_tx_streamer_free(&handler->tx_stream);
uhd_rx_streamer_free(&handler->rx_stream);
if (handler->has_rssi) {
uhd_sensor_value_free(&handler->rssi_value);
}
handler->async_thread_running = false;
pthread_join(handler->async_thread, NULL);
uhd_usrp_free(&handler->usrp);
/** Something else to close the USRP?? */
return 0;
}
void rf_uhd_set_master_clock_rate(void *h, double rate) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
if (handler->dynamic_rate) {
uhd_usrp_set_master_clock_rate(handler->usrp, rate, 0);
}
}
bool rf_uhd_is_master_clock_dynamic(void *h) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
return handler->dynamic_rate;
}
double rf_uhd_set_rx_srate(void *h, double freq)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
for (int i=0;i<handler->nof_rx_channels;i++) {
uhd_usrp_set_rx_rate(handler->usrp, freq, i);
}
uhd_usrp_get_rx_rate(handler->usrp, 0, &freq);
return freq;
}
double rf_uhd_set_tx_srate(void *h, double freq)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
for (int i=0;i<handler->nof_tx_channels;i++) {
uhd_usrp_set_tx_rate(handler->usrp, freq, i);
}
uhd_usrp_get_tx_rate(handler->usrp, 0, &freq);
handler->tx_rate = freq;
return freq;
}
double rf_uhd_set_rx_gain(void *h, double gain)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
for (int i=0;i<handler->nof_rx_channels;i++) {
uhd_usrp_set_rx_gain(handler->usrp, gain, i, "");
}
uhd_usrp_get_rx_gain(handler->usrp, 0, "", &gain);
return gain;
}
double rf_uhd_set_tx_gain(void *h, double gain)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
for (int i=0;i<handler->nof_tx_channels;i++) {
uhd_usrp_set_tx_gain(handler->usrp, gain, i, "");
}
uhd_usrp_get_tx_gain(handler->usrp, 0, "", &gain);
return gain;
}
double rf_uhd_get_rx_gain(void *h)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
double gain;
uhd_usrp_get_rx_gain(handler->usrp, 0, "", &gain);
return gain;
}
double rf_uhd_get_tx_gain(void *h)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
double gain;
uhd_usrp_get_tx_gain(handler->usrp, 0, "", &gain);
return gain;
}
double rf_uhd_set_rx_freq(void *h, double freq)
{
uhd_tune_request_t tune_request = {
.target_freq = freq,
.rf_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO,
.dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO,
};
uhd_tune_result_t tune_result;
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
for (int i=0;i<handler->nof_rx_channels;i++) {
uhd_usrp_set_rx_freq(handler->usrp, &tune_request, i, &tune_result);
}
uhd_usrp_get_rx_freq(handler->usrp, 0, &freq);
return freq;
}
double rf_uhd_set_tx_freq(void *h, double freq)
{
uhd_tune_request_t tune_request = {
.target_freq = freq,
.rf_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO,
.dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO,
};
uhd_tune_result_t tune_result;
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
for (int i=0;i<handler->nof_tx_channels;i++) {
uhd_usrp_set_tx_freq(handler->usrp, &tune_request, i, &tune_result);
}
uhd_usrp_get_tx_freq(handler->usrp, 0, &freq);
return freq;
}
void rf_uhd_get_time(void *h, time_t *secs, double *frac_secs) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
uhd_usrp_get_time_now(handler->usrp, 0, secs, frac_secs);
}
int rf_uhd_recv_with_time(void *h,
void *data,
uint32_t nsamples,
bool blocking,
time_t *secs,
double *frac_secs)
{
return rf_uhd_recv_with_time_multi(h, &data, nsamples, blocking, secs, frac_secs);
}
int rf_uhd_recv_with_time_multi(void *h,
void **data,
uint32_t nsamples,
bool blocking,
time_t *secs,
double *frac_secs)
{
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h;
size_t rxd_samples;
uhd_rx_metadata_handle *md = &handler->rx_md_first;
int trials = 0;
if (blocking) {
int n = 0;
do {
size_t rx_samples = nsamples;
if (rx_samples > nsamples - n) {
rx_samples = nsamples - n;
}
void *buffs_ptr[4];
for (int i=0;i<handler->nof_rx_channels;i++) {
cf_t *data_c = (cf_t*) data[i];
buffs_ptr[i] = &data_c[n];
}
uhd_error error = uhd_rx_streamer_recv(handler->rx_stream, buffs_ptr,
rx_samples, md, 1.0, false, &rxd_samples);
if (error) {
fprintf(stderr, "Error receiving from UHD: %d\n", error);
return -1;
}
md = &handler->rx_md;
n += rxd_samples;
trials++;
uhd_rx_metadata_error_code_t error_code;
uhd_rx_metadata_error_code(*md, &error_code);
if (error_code == UHD_RX_METADATA_ERROR_CODE_OVERFLOW) {
log_overflow(handler);
} else if (error_code == UHD_RX_METADATA_ERROR_CODE_LATE_COMMAND) {
log_late(handler);
} else if (error_code != UHD_RX_METADATA_ERROR_CODE_NONE) {
fprintf(stderr, "Error code 0x%x was returned during streaming. Aborting.\n", error_code);
}
} while (n < nsamples && trials < 100);
} else {
return uhd_rx_streamer_recv(handler->rx_stream, data,
nsamples, md, 0.0, false, &rxd_samples);
}
if (secs && frac_secs) {
uhd_rx_metadata_time_spec(handler->rx_md_first, secs, frac_secs);
}
return nsamples;
}
int rf_uhd_send_timed(void *h,
void *data,
int nsamples,
time_t secs,
double frac_secs,
bool has_time_spec,
bool blocking,
bool is_start_of_burst,
bool is_end_of_burst)
{
rf_uhd_handler_t* handler = (rf_uhd_handler_t*) h;
size_t txd_samples;
if (has_time_spec) {
uhd_tx_metadata_set_time_spec(&handler->tx_md, secs, frac_secs);
}
int trials = 0;
if (blocking) {
int n = 0;
cf_t *data_c = (cf_t*) data;
do {
size_t tx_samples = handler->tx_nof_samples;
// First packet is start of burst if so defined, others are never
if (n == 0) {
uhd_tx_metadata_set_start(&handler->tx_md, is_start_of_burst);
} else {
uhd_tx_metadata_set_start(&handler->tx_md, false);
}
// middle packets are never end of burst, last one as defined
if (nsamples - n > tx_samples) {
uhd_tx_metadata_set_end(&handler->tx_md, false);
} else {
tx_samples = nsamples - n;
uhd_tx_metadata_set_end(&handler->tx_md, is_end_of_burst);
}
void *buff = (void*) &data_c[n];
const void *buffs_ptr[4] = {buff, zero_mem, zero_mem, zero_mem};
uhd_error error = uhd_tx_streamer_send(handler->tx_stream, buffs_ptr,
tx_samples, &handler->tx_md, 3.0, &txd_samples);
if (error) {
fprintf(stderr, "Error sending to UHD: %d\n", error);
return -1;
}
// Increase time spec
uhd_tx_metadata_add_time_spec(&handler->tx_md, txd_samples/handler->tx_rate);
n += txd_samples;
trials++;
} while (n < nsamples && trials < 100);
return nsamples;
} else {
const void *buffs_ptr[4] = {data, zero_mem, zero_mem, zero_mem};
uhd_tx_metadata_set_start(&handler->tx_md, is_start_of_burst);
uhd_tx_metadata_set_end(&handler->tx_md, is_end_of_burst);
return uhd_tx_streamer_send(handler->tx_stream, buffs_ptr, nsamples, &handler->tx_md, 0.0, &txd_samples);
}
}