You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

246 lines
5.9 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/******************************************************************************
* File: block_queue.h
* Description: General-purpose blocking queue. It can behave as a bounded or
* unbounded blocking queue and allows blocking and non-blocking
* operations in both push and pop
*****************************************************************************/
#ifndef SRSRAN_BLOCK_QUEUE_H
#define SRSRAN_BLOCK_QUEUE_H
#include "srsran/adt/expected.h"
#include <memory>
#include <pthread.h>
#include <queue>
#include <stdint.h>
#include <stdio.h>
#include <strings.h>
#include <unistd.h>
#include <utility>
namespace srsran {
template <typename myobj>
class block_queue
{
public:
// Callback functions for mutexed operations inside pop/push methods
class call_mutexed_itf
{
public:
virtual void popping(const myobj& obj) = 0;
virtual void pushing(const myobj& obj) = 0;
};
explicit block_queue<myobj>(int capacity_ = -1)
{
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv_empty, NULL);
pthread_cond_init(&cv_full, NULL);
capacity = capacity_;
mutexed_callback = NULL;
enable = true;
num_threads = 0;
}
~block_queue()
{
// Unlock threads waiting at push or pop
pthread_mutex_lock(&mutex);
enable = false;
pthread_cond_signal(&cv_full);
pthread_cond_signal(&cv_empty);
pthread_mutex_unlock(&mutex);
// Wait threads blocked in push/pop to exit
while (num_threads > 0) {
usleep(100);
}
// Wait them to exit and destroy cv and mutex
pthread_mutex_lock(&mutex);
pthread_cond_destroy(&cv_full);
pthread_cond_destroy(&cv_empty);
pthread_mutex_unlock(&mutex);
pthread_mutex_destroy(&mutex);
}
void set_mutexed_itf(call_mutexed_itf* itf) { mutexed_callback = itf; }
void resize(int new_capacity) { capacity = new_capacity; }
void push(const myobj& value) { push_(value, true); }
void push(myobj&& value) { push_(std::move(value), true); }
bool try_push(const myobj& value) { return push_(value, false); }
srsran::error_type<myobj> try_push(myobj&& value) { return push_(std::move(value), false); }
bool try_pop(myobj* value) { return pop_(value, false); }
myobj wait_pop()
{ // blocking pop
myobj value = myobj();
pop_(&value, true);
return value;
}
bool empty()
{ // queue is empty?
pthread_mutex_lock(&mutex);
bool ret = q.empty();
pthread_mutex_unlock(&mutex);
return ret;
}
bool full()
{ // queue is full?
pthread_mutex_lock(&mutex);
bool ret = not check_queue_space_nolock(false);
pthread_mutex_unlock(&mutex);
return ret;
}
void clear()
{ // remove all items
myobj* item = NULL;
while (try_pop(item))
;
}
const myobj& front() const { return q.front(); }
size_t size()
{
size_t len = 0;
pthread_mutex_lock(&mutex);
len = q.size();
pthread_mutex_unlock(&mutex);
return len;
}
private:
bool pop_(myobj* value, bool block)
{
if (!enable) {
return false;
}
pthread_mutex_lock(&mutex);
num_threads++;
bool ret = false;
if (q.empty() && !block) {
goto exit;
}
while (q.empty() && enable) {
pthread_cond_wait(&cv_empty, &mutex);
}
if (!enable) {
goto exit;
}
if (value) {
*value = std::move(q.front());
}
if (mutexed_callback) {
mutexed_callback->popping(*value); // TODO: Value might be null!
}
q.pop();
ret = true;
pthread_cond_signal(&cv_full);
exit:
num_threads--;
pthread_mutex_unlock(&mutex);
return ret;
}
bool check_queue_space_nolock(bool block)
{
num_threads++;
if (capacity > 0) {
if (block) {
while (q.size() >= (uint32_t)capacity && enable) {
pthread_cond_wait(&cv_full, &mutex);
}
if (!enable) {
num_threads--;
return false;
}
} else if (q.size() >= (uint32_t)capacity) {
num_threads--;
return false;
}
}
num_threads--;
return true;
}
srsran::error_type<myobj> push_(myobj&& value, bool block)
{
if (!enable) {
return std::move(value);
}
pthread_mutex_lock(&mutex);
bool ret = check_queue_space_nolock(block);
if (ret) {
if (mutexed_callback) {
mutexed_callback->pushing(value);
}
q.push(std::move(value));
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&cv_empty);
return {};
}
pthread_mutex_unlock(&mutex);
return std::move(value);
}
bool push_(const myobj& value, bool block)
{
if (!enable) {
return false;
}
pthread_mutex_lock(&mutex);
bool ret = check_queue_space_nolock(block);
if (ret) {
if (mutexed_callback) {
mutexed_callback->pushing(value);
}
q.push(value);
pthread_cond_signal(&cv_empty);
}
pthread_mutex_unlock(&mutex);
return ret;
}
std::queue<myobj> q;
pthread_mutex_t mutex;
pthread_cond_t cv_empty;
pthread_cond_t cv_full;
call_mutexed_itf* mutexed_callback;
int capacity;
bool enable;
uint32_t num_threads;
};
} // namespace srsran
#endif // SRSRAN_BLOCK_QUEUE_H