You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

290 lines
8.2 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_BCD_HELPERS_H
#define SRSRAN_BCD_HELPERS_H
#include <ctype.h>
#include <stdint.h>
#include <string>
namespace srsran {
/******************************************************************************
* Convert between string and BCD-coded MCC.
* Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF.
* MCC 001 results in 0xF001
*****************************************************************************/
inline bool string_to_mcc(std::string str, uint16_t* mcc)
{
uint32_t len = (uint32_t)str.size();
if (len != 3) {
return false;
}
if (!isdigit(str[0]) || !isdigit(str[1]) || !isdigit(str[2])) {
return false;
}
*mcc = 0xF000;
*mcc |= ((uint8_t)(str[0] - '0') << 8);
*mcc |= ((uint8_t)(str[1] - '0') << 4);
*mcc |= ((uint8_t)(str[2] - '0'));
return true;
}
inline bool mcc_to_string(uint16_t mcc, std::string* str)
{
if ((mcc & 0xF000) != 0xF000) {
return false;
}
*str = "";
*str += ((mcc & 0x0F00) >> 8) + '0';
*str += ((mcc & 0x00F0) >> 4) + '0';
*str += (mcc & 0x000F) + '0';
return true;
}
/******************************************************************************
* Convert between array of bytes and BCD-coded MCC.
* Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF.
* MCC 001 results in 0xF001
*****************************************************************************/
inline bool bytes_to_mcc(const uint8_t* bytes, uint16_t* mcc)
{
*mcc = 0xF000;
*mcc |= (((uint16_t)bytes[0]) << 8u);
*mcc |= (((uint16_t)bytes[1]) << 4u);
*mcc |= (uint16_t)bytes[2];
return true;
}
inline bool mcc_to_bytes(uint16_t mcc, uint8_t* bytes)
{
if ((mcc & 0xF000) != 0xF000) {
return false;
}
bytes[0] = (uint8_t)((mcc & 0xF00) >> 8);
bytes[1] = (uint8_t)((mcc & 0x0F0) >> 4);
bytes[2] = (uint8_t)(mcc & 0x00F);
return true;
}
inline std::string mcc_bytes_to_string(uint8_t* mcc_bytes)
{
std::string mcc_str;
uint16_t mcc;
bytes_to_mcc(&mcc_bytes[0], &mcc);
if (!mcc_to_string(mcc, &mcc_str)) {
mcc_str = "000";
}
return mcc_str;
}
/******************************************************************************
* Convert between string and BCD-coded MNC.
* Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF.
* MNC 001 results in 0xF001
* MNC 01 results in 0xFF01
*****************************************************************************/
inline bool string_to_mnc(std::string str, uint16_t* mnc)
{
uint32_t len = str.size();
if (len != 3 && len != 2) {
return false;
}
if (len == 3) {
if (!isdigit(str[0]) || !isdigit(str[1]) || !isdigit(str[2])) {
return false;
}
*mnc = 0xF000;
*mnc |= ((uint8_t)(str[0] - '0') << 8);
*mnc |= ((uint8_t)(str[1] - '0') << 4);
*mnc |= ((uint8_t)(str[2] - '0'));
}
if (len == 2) {
if (!isdigit(str[0]) || !isdigit(str[1])) {
return false;
}
*mnc = 0xFF00;
*mnc |= ((uint8_t)(str[0] - '0') << 4);
*mnc |= ((uint8_t)(str[1] - '0'));
}
return true;
}
inline bool mnc_to_string(uint16_t mnc, std::string* str)
{
if ((mnc & 0xF000) != 0xF000) {
return false;
}
*str = "";
if ((mnc & 0xFF00) != 0xFF00) {
*str += ((mnc & 0x0F00) >> 8) + '0';
}
*str += ((mnc & 0x00F0) >> 4) + '0';
*str += (mnc & 0x000F) + '0';
return true;
}
/******************************************************************************
* Convert between array of bytes and BCD-coded MNC.
* Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF.
* MNC 001 results in 0xF001
* MNC 01 results in 0xFF01
*****************************************************************************/
inline bool bytes_to_mnc(const uint8_t* bytes, uint16_t* mnc, uint8_t len)
{
if (len != 3 && len != 2) {
*mnc = 0;
return false;
} else if (len == 3) {
*mnc = 0xF000;
*mnc |= ((uint16_t)bytes[0]) << 8u;
*mnc |= ((uint16_t)bytes[1]) << 4u;
*mnc |= ((uint16_t)bytes[2]) << 0u;
} else if (len == 2) {
*mnc = 0xFF00;
*mnc |= ((uint16_t)bytes[0]) << 4u;
*mnc |= ((uint16_t)bytes[1]) << 0u;
}
return true;
}
inline bool mnc_to_bytes(uint16_t mnc, uint8_t* bytes, uint8_t* len)
{
if ((mnc & 0xF000) != 0xF000) {
*len = 0;
return false;
}
uint8_t count = 0;
if ((mnc & 0xFF00) != 0xFF00) {
bytes[count++] = (mnc & 0xF00) >> 8u;
}
bytes[count++] = (mnc & 0x00F0) >> 4u;
bytes[count++] = (mnc & 0x000F);
*len = count;
return true;
}
template <class Vec>
bool mnc_to_bytes(uint16_t mnc, Vec& vec)
{
uint8_t len;
uint8_t v[3];
bool ret = mnc_to_bytes(mnc, &v[0], &len);
vec.resize(len);
memcpy(&vec[0], &v[0], len);
return ret;
}
inline std::string mnc_bytes_to_string(uint8_t* mnc_bytes, uint32_t nof_bytes)
{
std::string mnc_str;
uint16_t mnc;
bytes_to_mnc(&mnc_bytes[0], &mnc, nof_bytes);
if (!mnc_to_string(mnc, &mnc_str)) {
mnc_str = "000";
}
return mnc_str;
}
template <class Vec>
std::string mnc_bytes_to_string(Vec mnc_bytes)
{
return mnc_bytes_to_string(&mnc_bytes[0], mnc_bytes.size());
}
/******************************************************************************
* Convert PLMN to BCD-coded MCC and MNC.
* Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF.
* MNC 001 represented as 0xF001
* MNC 01 represented as 0xFF01
* PLMN encoded as per TS 36.413 sec 9.2.3.8
*****************************************************************************/
inline void s1ap_plmn_to_mccmnc(uint32_t plmn, uint16_t* mcc, uint16_t* mnc)
{
uint8_t nibbles[6];
nibbles[0] = (plmn & 0xF00000) >> 20;
nibbles[1] = (plmn & 0x0F0000) >> 16;
nibbles[2] = (plmn & 0x00F000) >> 12;
nibbles[3] = (plmn & 0x000F00) >> 8;
nibbles[4] = (plmn & 0x0000F0) >> 4;
nibbles[5] = (plmn & 0x00000F);
*mcc = 0xF000;
*mnc = 0xF000;
*mcc |= nibbles[1] << 8; // MCC digit 1
*mcc |= nibbles[0] << 4; // MCC digit 2
*mcc |= nibbles[3]; // MCC digit 3
if (nibbles[2] == 0xF) {
// 2-digit MNC
*mnc |= 0x0F00; // MNC digit 1
*mnc |= nibbles[5] << 4; // MNC digit 2
*mnc |= nibbles[4]; // MNC digit 3
} else {
// 3-digit MNC
*mnc |= nibbles[2] << 8; // MNC digit 1
*mnc |= nibbles[5] << 4; // MNC digit 2
*mnc |= nibbles[4]; // MNC digit 3
}
}
/******************************************************************************
* Convert BCD-coded MCC and MNC to PLMN.
* Digits are represented by 4-bit nibbles. Unused nibbles are filled with 0xF.
* MNC 001 represented as 0xF001
* MNC 01 represented as 0xFF01
* PLMN encoded as per TS 36.413 sec 9.2.3.8
*****************************************************************************/
inline void s1ap_mccmnc_to_plmn(uint16_t mcc, uint16_t mnc, uint32_t* plmn)
{
uint8_t nibbles[6];
nibbles[1] = (mcc & 0x0F00) >> 8; // MCC digit 1
nibbles[0] = (mcc & 0x00F0) >> 4; // MCC digit 2
nibbles[3] = (mcc & 0x000F); // MCC digit 3
if ((mnc & 0xFF00) == 0xFF00) {
// 2-digit MNC
nibbles[2] = 0x0F; // MNC digit 1
nibbles[5] = (mnc & 0x00F0) >> 4; // MNC digit 2
nibbles[4] = (mnc & 0x000F); // MNC digit 3
} else {
// 3-digit MNC
nibbles[2] = (mnc & 0x0F00) >> 8; // MNC digit 1
nibbles[5] = (mnc & 0x00F0) >> 4; // MNC digit 2
nibbles[4] = (mnc & 0x000F); // MNC digit 3
}
*plmn = 0x000000;
*plmn |= nibbles[0] << 20;
*plmn |= nibbles[1] << 16;
*plmn |= nibbles[2] << 12;
*plmn |= nibbles[3] << 8;
*plmn |= nibbles[4] << 4;
*plmn |= nibbles[5];
}
} // namespace srsran
#endif // SRSRAN_BCD_HELPERS_H