/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "srslte/srslte.h" #include "srslte/phy/rf/rf.h" srslte_rf_t rf; char *output_file_name = NULL; srslte_cell_t cell = { 6, // nof_prb 1, // nof_ports 1, // cell_id SRSLTE_CP_NORM, // cyclic prefix SRSLTE_PHICH_R_1, // PHICH resources SRSLTE_PHICH_NORM // PHICH length }; char *rf_args = ""; float rf_amp = 0.5, rf_gain = 30.0, rf_freq = 2400000000; bool null_file_sink=false; srslte_filesink_t fsink; srslte_ofdm_t ifft; srslte_mod_t modulation; uint32_t sf_n_re, sf_n_samples; cf_t *sf_buffer = NULL, *output_buffer = NULL; void usage(char *prog) { printf("Usage: %s [algfmv]\n", prog); printf("\t-a RF args [Default %s]\n", rf_args); printf("\t-l RF amplitude [Default %.2f]\n", rf_amp); printf("\t-g RF TX gain [Default %.2f dB]\n", rf_gain); printf("\t-f RF TX frequency [Default %.1f MHz]\n", rf_freq / 1000000); printf("\t-m modulation (1: BPSK, 2: QPSK, 3: QAM16, 4: QAM64) [Default BPSK]\n"); printf("\t-v [set srslte_verbose to debug, default none]\n"); } void parse_args(int argc, char **argv) { int opt; while ((opt = getopt(argc, argv, "algfmv")) != -1) { switch (opt) { case 'a': rf_args = argv[optind]; break; case 'g': rf_gain = atof(argv[optind]); break; case 'l': rf_amp = atof(argv[optind]); break; case 'f': rf_freq = atof(argv[optind]); break; case 'm': switch(atoi(argv[optind])) { case 1: modulation = SRSLTE_MOD_BPSK; break; case 2: modulation = SRSLTE_MOD_QPSK; break; case 4: modulation = SRSLTE_MOD_16QAM; break; case 6: modulation = SRSLTE_MOD_64QAM; break; default: fprintf(stderr, "Invalid modulation %d. Possible values: " "(1: BPSK, 2: QPSK, 3: QAM16, 4: QAM64)\n", atoi(argv[optind])); break; } break; case 'v': srslte_verbose++; break; default: usage(argv[0]); exit(-1); } } #ifdef DISABLE_RF if (!output_file_name) { usage(argv[0]); exit(-1); } #endif } void base_init() { /* init memory */ sf_buffer = malloc(sizeof(cf_t) * sf_n_re); if (!sf_buffer) { perror("malloc"); exit(-1); } output_buffer = malloc(sizeof(cf_t) * sf_n_samples); if (!output_buffer) { perror("malloc"); exit(-1); } printf("Opening RF device...\n"); if (srslte_rf_open(&rf, rf_args)) { fprintf(stderr, "Error opening rf\n"); exit(-1); } /* create ifft object */ if (srslte_ofdm_tx_init(&ifft, SRSLTE_CP_NORM, cell.nof_prb)) { fprintf(stderr, "Error creating iFFT object\n"); exit(-1); } srslte_ofdm_set_normalize(&ifft, true); } void base_free() { srslte_ofdm_tx_free(&ifft); if (sf_buffer) { free(sf_buffer); } if (output_buffer) { free(output_buffer); } srslte_rf_close(&rf); } int main(int argc, char **argv) { int sf_idx=0, N_id_2=0; cf_t pss_signal[SRSLTE_PSS_LEN]; float sss_signal0[SRSLTE_SSS_LEN]; // for subframe 0 float sss_signal5[SRSLTE_SSS_LEN]; // for subframe 5 int i; #ifdef DISABLE_RF if (argc < 3) { usage(argv[0]); exit(-1); } #endif parse_args(argc, argv); N_id_2 = cell.id % 3; sf_n_re = 2 * SRSLTE_CP_NORM_NSYMB * cell.nof_prb * SRSLTE_NRE; sf_n_samples = 2 * SRSLTE_SLOT_LEN(srslte_symbol_sz(cell.nof_prb)); cell.phich_length = SRSLTE_PHICH_NORM; cell.phich_resources = SRSLTE_PHICH_R_1; /* this *must* be called after setting slot_len_* */ base_init(); /* Generate PSS/SSS signals */ srslte_pss_generate(pss_signal, N_id_2); srslte_sss_generate(sss_signal0, sss_signal5, cell.id); printf("Set TX rate: %.2f MHz\n", srslte_rf_set_tx_srate(&rf, srslte_sampling_freq_hz(cell.nof_prb)) / 1000000); printf("Set TX gain: %.1f dB\n", srslte_rf_set_tx_gain(&rf, rf_gain)); printf("Set TX freq: %.2f MHz\n", srslte_rf_set_tx_freq(&rf, rf_freq) / 1000000); uint32_t nbits; srslte_modem_table_t modulator; srslte_modem_table_init(&modulator); srslte_modem_table_lte(&modulator, modulation); srslte_tcod_t turbocoder; srslte_tcod_init(&turbocoder, SRSLTE_TCOD_MAX_LEN_CB); srslte_dft_precoding_t dft_precod; srslte_dft_precoding_init(&dft_precod, 12); nbits = srslte_cbsegm_cbindex(sf_n_samples/8/srslte_mod_bits_x_symbol(modulation)/3 - 12); uint32_t ncoded_bits = sf_n_samples/8/srslte_mod_bits_x_symbol(modulation); uint8_t *data = malloc(sizeof(uint8_t)*nbits); uint8_t *data_enc = malloc(sizeof(uint8_t)*ncoded_bits); cf_t *symbols = malloc(sizeof(cf_t)*sf_n_samples); bzero(data_enc, sizeof(uint8_t)*ncoded_bits); while (1) { for (sf_idx = 0; sf_idx < SRSLTE_NSUBFRAMES_X_FRAME; sf_idx++) { bzero(sf_buffer, sizeof(cf_t) * sf_n_re); #ifdef kk if (sf_idx == 0 || sf_idx == 5) { srslte_pss_put_slot(pss_signal, sf_buffer, cell.nof_prb, SRSLTE_CP_NORM); srslte_sss_put_slot(sf_idx ? sss_signal5 : sss_signal0, sf_buffer, cell.nof_prb, SRSLTE_CP_NORM); /* Transform to OFDM symbols */ srslte_ofdm_tx_sf(&ifft, sf_buffer, output_buffer); float norm_factor = (float) sqrtf(cell.nof_prb)/15; srslte_vec_sc_prod_cfc(output_buffer, rf_amp*norm_factor, output_buffer, SRSLTE_SF_LEN_PRB(cell.nof_prb)); } else { #endif /* Generate random data */ for (i=0;i