/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_DUMMY_GNB_STACK_H #define SRSRAN_DUMMY_GNB_STACK_H #include #include #include #include #include #include class gnb_dummy_stack : public srsenb::stack_interface_phy_nr { private: srslog::basic_logger& logger = srslog::fetch_basic_logger("GNB STK"); const uint16_t rnti = 0x1234; const uint32_t mcs = 1; srsran::circular_array dci_dl_location; srsran::circular_array dci_ul_location; srsran::circular_array dl_data_to_ul_ack; uint32_t ss_id = 0; srsran_dci_format_nr_t dci_format_ul = SRSRAN_DCI_FORMAT_NR_COUNT; srsran_dci_format_nr_t dci_format_dl = SRSRAN_DCI_FORMAT_NR_COUNT; uint32_t dl_freq_res = 0; uint32_t dl_time_res = 0; srsran_random_t random_gen = nullptr; srsran::phy_cfg_nr_t phy_cfg = {}; bool valid = false; std::mutex mac_metrics_mutex; srsenb::mac_ue_metrics_t mac_metrics = {}; // HARQ feedback class pending_ack_t { private: std::mutex mutex; srsran_pdsch_ack_nr_t ack = {}; public: pending_ack_t() = default; void push_ack(srsran_harq_ack_resource_t& ack_resource) { // Prepare ACK information srsran_harq_ack_m_t ack_m = {}; ack_m.resource = ack_resource; ack_m.present = true; std::unique_lock lock(mutex); ack.nof_cc = 1; srsran_harq_ack_insert_m(&ack, &ack_m); } srsran_pdsch_ack_nr_t get_ack() { std::unique_lock lock(mutex); srsran_pdsch_ack_nr_t ret = ack; ack = {}; return ret; } uint32_t get_dai() { std::unique_lock lock(mutex); return ack.cc[0].M % 4; } }; std::array pending_ack = {}; struct dummy_harq_proc { static const uint32_t MAX_TB_SZ = SRSRAN_LDPC_MAX_LEN_CB * SRSRAN_SCH_NR_MAX_NOF_CB_LDPC; std::vector data; srsran_softbuffer_tx_t softbuffer = {}; dummy_harq_proc() { // Allocate data data.resize(MAX_TB_SZ); // Initialise softbuffer if (srsran_softbuffer_tx_init_guru(&softbuffer, SRSRAN_SCH_NR_MAX_NOF_CB_LDPC, SRSRAN_LDPC_MAX_LEN_ENCODED_CB) < SRSRAN_SUCCESS) { ERROR("Error Tx buffer"); } } ~dummy_harq_proc() { srsran_softbuffer_tx_free(&softbuffer); } }; srsran::circular_array tx_harq_proc; public: struct args_t { srsran::phy_cfg_nr_t phy_cfg; ///< Physical layer configuration uint16_t rnti = 0x1234; ///< C-RNTI uint32_t mcs = 10; ///< Modulation code scheme uint32_t ss_id = 1; ///< Search Space identifier uint32_t pdcch_aggregation_level = 0; ///< PDCCH aggregation level uint32_t pdcch_dl_candidate_index = 0; ///< PDCCH DL DCI candidate index uint32_t pdcch_ul_candidate_index = 0; ///< PDCCH UL DCI candidate index uint32_t dl_start_rb = 0; ///< Start resource block uint32_t dl_length_rb = 0l; ///< Number of resource blocks uint32_t dl_time_res = 0; ///< PDSCH time resource std::string log_level = "debug"; }; gnb_dummy_stack(args_t args) : mcs(args.mcs), rnti(args.rnti), dl_time_res(args.dl_time_res), phy_cfg(args.phy_cfg), ss_id(args.ss_id) { random_gen = srsran_random_init(0x1234); logger.set_level(srslog::str_to_basic_level(args.log_level)); // Select DCI locations for (uint32_t slot = 0; slot < SRSRAN_NOF_SF_X_FRAME; slot++) { srsran::bounded_vector locations; if (not phy_cfg.get_dci_locations(slot, rnti, args.ss_id, args.pdcch_aggregation_level, locations)) { logger.error( "Error generating locations for slot %d and aggregation level %d", slot, args.pdcch_aggregation_level); return; } // DCI DL if (args.pdcch_dl_candidate_index >= locations.size()) { logger.error("Candidate index %d exceeds the number of candidates %d for aggregation level %d", args.pdcch_dl_candidate_index, (uint32_t)locations.size(), args.pdcch_aggregation_level); return; } dci_dl_location[slot] = locations[args.pdcch_dl_candidate_index]; // DCI UL if (args.pdcch_ul_candidate_index >= locations.size()) { logger.error("Candidate index %d exceeds the number of candidates %d for aggregation level %d", args.pdcch_ul_candidate_index, (uint32_t)locations.size(), args.pdcch_aggregation_level); return; } dci_ul_location[slot] = locations[args.pdcch_ul_candidate_index]; } // Select DCI formats dci_format_dl = phy_cfg.get_dci_format_pdsch(args.ss_id); dci_format_ul = phy_cfg.get_dci_format_pusch(args.ss_id); if (dci_format_dl == SRSRAN_DCI_FORMAT_NR_COUNT or dci_format_ul == SRSRAN_DCI_FORMAT_NR_COUNT) { logger.error("Missing valid DL or UL DCI format in search space"); return; } // Select DL frequency domain resources dl_freq_res = srsran_ra_nr_type1_riv(args.phy_cfg.carrier.nof_prb, args.dl_start_rb, args.dl_length_rb); // Setup DL Data to ACK timing for (uint32_t i = 0; i < SRSRAN_NOF_SF_X_FRAME; i++) { dl_data_to_ul_ack[i] = args.phy_cfg.harq_ack.dl_data_to_ul_ack[i % SRSRAN_MAX_NOF_DL_DATA_TO_UL]; } // If reached this point the configuration is valid valid = true; } ~gnb_dummy_stack() { srsran_random_free(random_gen); } bool is_valid() const { return valid; } int rx_data_indication(rx_data_ind_t& grant) override { return 0; } int slot_indication(const srsran_slot_cfg_t& slot_cfg) override { return 0; } int get_dl_sched(const srsran_slot_cfg_t& slot_cfg, dl_sched_t& dl_sched) override { logger.set_context(slot_cfg.idx); // Check if it is TDD DL slot and PDSCH mask, if no PDSCH shall be scheduled, do not set any grant and skip if (not srsran_tdd_nr_is_dl(&phy_cfg.tdd, phy_cfg.carrier.scs, slot_cfg.idx)) { return SRSRAN_SUCCESS; } // Instantiate PDCCH and PDSCH pdcch_dl_t pdcch = {}; pdsch_t pdsch = {}; // Select grant and set data pdsch.data[0] = tx_harq_proc[slot_cfg.idx].data.data(); // Second TB is not used pdsch.data[1] = nullptr; // Fill DCI configuration pdcch.dci_cfg = phy_cfg.get_dci_cfg(); // Fill DCI context if (not phy_cfg.get_dci_ctx_pdsch_rnti_c(ss_id, dci_dl_location[slot_cfg.idx], rnti, pdcch.dci.ctx)) { logger.error("Error filling PDSCH DCI context"); return SRSRAN_ERROR; } uint32_t harq_feedback = dl_data_to_ul_ack[slot_cfg.idx]; uint32_t harq_ack_slot_idx = TTI_ADD(slot_cfg.idx, harq_feedback); // Fill DCI fields srsran_dci_dl_nr_t& dci = pdcch.dci; dci.freq_domain_assigment = dl_freq_res; dci.time_domain_assigment = dl_time_res; dci.mcs = mcs; dci.rv = 0; dci.ndi = (slot_cfg.idx / SRSRAN_NOF_SF_X_FRAME) % 2; dci.pid = slot_cfg.idx % SRSRAN_NOF_SF_X_FRAME; dci.dai = pending_ack[harq_ack_slot_idx % pending_ack.size()].get_dai(); dci.tpc = 1; dci.pucch_resource = 0; if (dci.ctx.format == srsran_dci_format_nr_1_0) { dci.harq_feedback = dl_data_to_ul_ack[slot_cfg.idx] - 1; } else { dci.harq_feedback = slot_cfg.idx; } // Create PDSCH configuration if (not phy_cfg.get_pdsch_cfg(slot_cfg, dci, pdsch.sch)) { logger.error("Error converting DCI to grant"); return SRSRAN_ERROR; } // Generate random data srsran_random_byte_vector(random_gen, pdsch.data[0], pdsch.sch.grant.tb[0].tbs / 8); // Set softbuffer pdsch.sch.grant.tb[0].softbuffer.tx = &tx_harq_proc[slot_cfg.idx].softbuffer; // Reset Tx softbuffer always srsran_softbuffer_tx_reset(pdsch.sch.grant.tb[0].softbuffer.tx); // Push scheduling results dl_sched.pdcch_dl.push_back(pdcch); dl_sched.pdsch.push_back(pdsch); // Generate PDSCH HARQ Feedback srsran_harq_ack_resource_t ack_resource = {}; if (not phy_cfg.get_pdsch_ack_resource(dci, ack_resource)) { logger.error("Error getting ack resource"); return SRSRAN_ERROR; } // Calculate PUCCH slot and push resource pending_ack[harq_ack_slot_idx % pending_ack.size()].push_ack(ack_resource); return SRSRAN_SUCCESS; } int get_ul_sched(const srsran_slot_cfg_t& slot_cfg, ul_sched_t& ul_sched) override { logger.set_context(slot_cfg.idx); srsran_pdsch_ack_nr_t ack = pending_ack[slot_cfg.idx % pending_ack.size()].get_ack(); if (ack.nof_cc > 0) { mac_interface_phy_nr::pucch_t pucch = {}; if (logger.debug.enabled()) { std::array str = {}; if (srsran_harq_ack_info(&ack, str.data(), (uint32_t)str.size()) > 0) { logger.debug("HARQ feedback:\n%s", str.data()); } } if (not phy_cfg.get_pucch(slot_cfg, ack, pucch.pucch_cfg, pucch.uci_cfg, pucch.resource)) { logger.error("Error getting UCI CFG"); return SRSRAN_ERROR; } ul_sched.pucch.push_back(pucch); } return 0; } int pucch_info(const srsran_slot_cfg_t& slot_cfg, const pucch_info_t& pucch_info) override { std::unique_lock lock(mac_metrics_mutex); for (uint32_t i = 0; i < pucch_info.uci_data.cfg.ack.count; i++) { const srsran_harq_ack_bit_t* ack_bit = &pucch_info.uci_data.cfg.ack.bits[i]; bool is_ok = (pucch_info.uci_data.value.ack[i] == 1) and pucch_info.uci_data.value.valid; uint32_t tb_count = (ack_bit->tb0 ? 1 : 0) + (ack_bit->tb1 ? 1 : 0); mac_metrics.tx_pkts += tb_count; if (not is_ok) { mac_metrics.tx_errors += tb_count; logger.debug("NACK received!"); } } return SRSRAN_SUCCESS; } int pusch_info(const srsran_slot_cfg_t& slot_cfg, const pusch_info_t& pusch_info) override { // ... Not implemented return SRSRAN_ERROR; } srsenb::mac_ue_metrics_t get_metrics() { std::unique_lock lock(mac_metrics_mutex); return mac_metrics; } }; #endif // SRSRAN_DUMMY_GNB_STACK_H