/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsUE library. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include "srslte/phy/utils/debug.h" #include "phy/phy.h" #include "srslte/interfaces/ue_interfaces.h" #include "srslte/common/log_filter.h" #include "srslte/radio/radio_multi.h" /********************************************************************** * Program arguments processing ***********************************************************************/ typedef struct { float rf_rx_freq; float rf_tx_freq; float rf_rx_gain; float rf_tx_gain; bool continous; }prog_args_t; prog_args_t prog_args; uint32_t srsapps_verbose = 0; void args_default(prog_args_t *args) { args->rf_rx_freq = -1.0; args->rf_tx_freq = -1.0; args->rf_rx_gain = -1; // set to autogain args->rf_tx_gain = -1; args->continous = false; } void usage(prog_args_t *args, char *prog) { printf("Usage: %s [gGcv] -f rx_frequency -F tx_frequency (in Hz)\n", prog); printf("\t-g RF RX gain [Default AGC]\n"); printf("\t-G RF TX gain [Default same as RX gain (AGC)]\n"); printf("\t-c Run continuously [Default only once]\n"); printf("\t-v [increase verbosity, default none]\n"); } void parse_args(prog_args_t *args, int argc, char **argv) { int opt; args_default(args); while ((opt = getopt(argc, argv, "gGfFcv")) != -1) { switch (opt) { case 'g': args->rf_rx_gain = atof(argv[optind]); break; case 'G': args->rf_tx_gain = atof(argv[optind]); break; case 'f': args->rf_rx_freq = atof(argv[optind]); break; case 'F': args->rf_tx_freq = atof(argv[optind]); break; case 'c': args->continous = true; break; case 'v': srsapps_verbose++; break; default: usage(args, argv[0]); exit(-1); } } if (args->rf_rx_freq < 0 || args->rf_tx_freq < 0) { usage(args, argv[0]); exit(-1); } } typedef enum{ rar_header_type_bi = 0, rar_header_type_rapid, rar_header_type_n_items, }rar_header_t; static const char rar_header_text[rar_header_type_n_items][8] = {"BI", "RAPID"}; typedef struct { rar_header_t hdr_type; bool hopping_flag; uint32_t tpc_command; bool ul_delay; bool csi_req; uint16_t rba; uint16_t timing_adv_cmd; uint16_t temp_c_rnti; uint8_t mcs; uint8_t RAPID; uint8_t BI; }rar_msg_t; int rar_unpack(uint8_t *buffer, rar_msg_t *msg) { int ret = SRSLTE_ERROR; uint8_t *ptr = buffer; if(buffer != NULL && msg != NULL) { ptr++; msg->hdr_type = (rar_header_t) *ptr++; if(msg->hdr_type == rar_header_type_bi) { ptr += 2; msg->BI = srslte_bit_pack(&ptr, 4); ret = SRSLTE_SUCCESS; } else if (msg->hdr_type == rar_header_type_rapid) { msg->RAPID = srslte_bit_pack(&ptr, 6); ptr++; msg->timing_adv_cmd = srslte_bit_pack(&ptr, 11); msg->hopping_flag = *ptr++; msg->rba = srslte_bit_pack(&ptr, 10); msg->mcs = srslte_bit_pack(&ptr, 4); msg->tpc_command = srslte_bit_pack(&ptr, 3); msg->ul_delay = *ptr++; msg->csi_req = *ptr++; msg->temp_c_rnti = srslte_bit_pack(&ptr, 16); ret = SRSLTE_SUCCESS; } } return(ret); } srsue::phy my_phy; bool bch_decoded = false; uint8_t payload[SRSLTE_MAX_TB][10240]; uint8_t payload_bits[SRSLTE_MAX_TB][10240]; const uint8_t conn_request_msg[] = {0x20, 0x06, 0x1F, 0x5C, 0x2C, 0x04, 0xB2, 0xAC, 0xF6, 0x00, 0x00, 0x00}; enum mac_state {RA, RAR, CONNREQUEST, CONNSETUP} state = RA; uint32_t preamble_idx = 0; rar_msg_t rar_msg; uint32_t nof_rtx_connsetup = 0; uint32_t rv_value[4] = {0, 2, 3, 1}; void config_phy() { srsue::phy_interface_rrc::phy_cfg_t config; config.common.prach_cnfg.prach_cnfg_info.prach_config_index = 0; config.common.prach_cnfg.prach_cnfg_info.prach_freq_offset = 0; config.common.prach_cnfg.prach_cnfg_info.high_speed_flag = false; config.common.prach_cnfg.root_sequence_index = 0; config.common.prach_cnfg.prach_cnfg_info.zero_correlation_zone_config = 11; config.common.pusch_cnfg.ul_rs.group_hopping_enabled = false; config.common.pusch_cnfg.ul_rs.sequence_hopping_enabled = false; config.common.pusch_cnfg.n_sb = 2; config.common.pusch_cnfg.ul_rs.cyclic_shift = 0; config.common.pusch_cnfg.ul_rs.group_assignment_pusch = 0; config.common.pusch_cnfg.pusch_hopping_offset = 0; config.common.pucch_cnfg.delta_pucch_shift = LIBLTE_RRC_DELTA_PUCCH_SHIFT_DS2; config.common.pucch_cnfg.n_cs_an = 0; config.common.pucch_cnfg.n1_pucch_an = 1; my_phy.configure_ul_params(); my_phy.configure_prach_params(); } srslte_softbuffer_rx_t softbuffers_rx[SRSLTE_MAX_TB]; srslte_softbuffer_tx_t softbuffers_tx[SRSLTE_MAX_TB]; uint16_t temp_c_rnti; class rrc_dummy : public srsue::rrc_interface_phy { public: void in_sync() {}; void out_of_sync() {}; }; /******** MAC Interface implementation */ class testmac : public srsue::mac_interface_phy { public: testmac() { rar_rnti_set = false; } bool rar_rnti_set; void pch_decoded_ok(uint32_t len) {} void tti_clock(uint32_t tti) { if (!rar_rnti_set) { int prach_tti = my_phy.prach_tx_tti(); if (prach_tti > 0) { my_phy.pdcch_dl_search(SRSLTE_RNTI_RAR, 1+prach_tti%10, prach_tti+3, prach_tti+13); rar_rnti_set = true; } } } void new_grant_ul(mac_grant_t grant, tb_action_ul_t *action) { printf("New grant UL\n"); for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb ++) { memcpy(payload[tb], conn_request_msg, grant.n_bytes[tb]*sizeof(uint8_t)); action->rv[tb] = rv_value[nof_rtx_connsetup%4]; action->payload_ptr[tb] = payload[tb]; if (action->rv[tb] == 0) { srslte_softbuffer_tx_reset(&softbuffers_tx[tb]); } } action->current_tx_nb = nof_rtx_connsetup; action->softbuffers = softbuffers_tx; action->rnti = temp_c_rnti; action->expect_ack = (nof_rtx_connsetup < 5)?true:false; memcpy(&action->phy_grant, &grant.phy_grant, sizeof(srslte_phy_grant_t)); memcpy(&last_grant, &grant, sizeof(mac_grant_t)); action->tx_enabled = true; my_phy.pdcch_dl_search(SRSLTE_RNTI_USER, temp_c_rnti); } void new_grant_ul_ack(mac_grant_t grant, bool ack, tb_action_ul_t *action) { printf("New grant UL ACK\n"); } void harq_recv(uint32_t tti, bool ack, tb_action_ul_t *action) { printf("harq recv hi=%d\n", ack?1:0); if (!ack) { nof_rtx_connsetup++; action->current_tx_nb = nof_rtx_connsetup; action->softbuffers = softbuffers_tx; action->rnti = temp_c_rnti; action->expect_ack = true; memcpy(&action->phy_grant, &last_grant.phy_grant, sizeof(srslte_phy_grant_t)); action->tx_enabled = true; for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb ++) { action->rv[tb] = rv_value[nof_rtx_connsetup%4]; if (action->rv[tb] == 0) { srslte_softbuffer_tx_reset(&softbuffers_tx[tb]); } printf("Retransmission %d (TB %d), rv=%d\n", nof_rtx_connsetup, tb, action->rv[tb]); } } } void new_grant_dl(mac_grant_t grant, tb_action_dl_t *action) { action->decode_enabled = true; action->default_ack = false; if (grant.rnti == 2) { action->generate_ack = false; } else { action->generate_ack = true; } action->rnti = grant.rnti; memcpy(&action->phy_grant, &grant.phy_grant, sizeof(srslte_phy_grant_t)); memcpy(&last_grant, &grant, sizeof(mac_grant_t)); for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb ++) { action->softbuffers[tb] = &softbuffers_rx[tb]; action->rv[tb] = grant.rv[tb]; action->payload_ptr[tb] = payload[tb]; if (action->rv[tb] == 0) { srslte_softbuffer_rx_reset(&softbuffers_rx[tb]); } } } void tb_decoded(bool ack, uint32_t tb_idx, srslte_rnti_type_t rnti_type, uint32_t harq_pid) { if (ack) { if (rnti_type == SRSLTE_RNTI_RAR) { my_phy.pdcch_dl_search_reset(); srslte_bit_unpack_vector(payload[tb_idx], payload_bits[tb_idx], last_grant.n_bytes[tb_idx]*8); rar_unpack(payload_bits[tb_idx], &rar_msg); if (rar_msg.RAPID == preamble_idx) { printf("Received RAR at TTI: %d\n", last_grant.tti); my_phy.set_timeadv_rar(rar_msg.timing_adv_cmd); temp_c_rnti = rar_msg.temp_c_rnti; if (last_grant.n_bytes[0]*8 > 20 + SRSLTE_RAR_GRANT_LEN) { uint8_t rar_grant[SRSLTE_RAR_GRANT_LEN]; memcpy(rar_grant, &payload_bits[20], sizeof(uint8_t)*SRSLTE_RAR_GRANT_LEN); my_phy.set_rar_grant(last_grant.tti, rar_grant); } } else { printf("Received RAR RAPID=%d\n", rar_msg.RAPID); } } else { printf("Received Connection Setup\n"); my_phy.pdcch_dl_search_reset(); } } } void bch_decoded_ok(uint8_t *payload, uint32_t len) { printf("BCH decoded\n"); bch_decoded = true; srslte_cell_t cell; my_phy.get_current_cell(&cell); for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; tb++) { srslte_softbuffer_rx_init(&softbuffers_rx[tb], cell.nof_prb); srslte_softbuffer_tx_init(&softbuffers_tx[tb], cell.nof_prb); } } private: mac_grant_t last_grant; }; testmac my_mac; srslte::radio_multi radio; rrc_dummy rrc_dummy; int main(int argc, char *argv[]) { srslte::log_filter log("PHY"); parse_args(&prog_args, argc, argv); // Init Radio and PHY radio.init(); my_phy.init(&radio, &my_mac, &rrc_dummy, &log); if (prog_args.rf_rx_gain > 0 && prog_args.rf_tx_gain > 0) { radio.set_rx_gain(prog_args.rf_rx_gain); radio.set_tx_gain(prog_args.rf_tx_gain); } else { radio.start_agc(false); radio.set_tx_rx_gain_offset(10); my_phy.set_agc_enable(true); } if (srsapps_verbose == 1) { log.set_level(srslte::LOG_LEVEL_INFO); printf("Log level info\n"); } if (srsapps_verbose == 2) { log.set_level(srslte::LOG_LEVEL_DEBUG); printf("Log level debug\n"); } // Give it time to create thread sleep(1); // Set RX freq radio.set_rx_freq(prog_args.rf_rx_freq); radio.set_tx_freq(prog_args.rf_tx_freq); // Instruct the PHY to configure PRACH parameters and sync to current cell while(!my_phy.sync_status()) { usleep(20000); } // Setup PHY parameters config_phy(); /* Instruct PHY to send PRACH and prepare it for receiving RAR */ my_phy.prach_send(preamble_idx); /* go to idle and process each tti */ bool running = true; while(running) { sleep(1); } my_phy.stop(); radio.stop_rx(); }